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Collusion and dynamic
(under-) investment in quality
Volker Nocke∗

In a dynamic game of investment in product quality, I investigate whether collusive under-
investment equilibria can be supported by the threat of escalation in investment outlays. When
there are no spillovers, underinvestment equilibria exist even though, by deviating, a firm can
gain a persistent strategic advantage. When there are strong spillovers, underinvestment equilib-
ria fail to exist. A weakening of patent protection can thus lead to more investment in equilibrium.
A “nonfragmentation” result is shown to hold: in all free-entry equilibria, industry concentra-
tion is bounded away from zero, no matter how large the market, and despite the existence of
underinvestment equilibria.

1. Introduction

� In recent years, antitrust authorities have devoted much of their attention and resources to
fast-growing innovative industries such as computing, pharmaceuticals, and healthcare.1 In these
cases, the complaint often explicitly focuses on the dynamic nature of competition in such markets.
As Evans and Schmalensee (2001) point out, static price/output competition in the market is
arguably less important in innovative industries than dynamic competition for the market. In such
industries, antitrust authorities should thus be more concerned with adverse effects on investment
and innovation rather than on prices or quantities.

This article is concerned with collusion in investment levels in industries in which firms
invest to improve their product quality. Indeed, oligopolistic firms often invest in order to gain a
competitive advantage over their rivals, and thereby impose a negative externality on their rivals.
Because of this business-stealing effect, noncooperative investment levels tend to be higher than
those that maximize firms’ joint profits. Hence, firms have an incentive to coordinate on low
investment outlays. Such underinvestment may be sustained by the threat of an escalation in
investment outlays in the event of a deviation.

While a number of articles take seriously the fact that competition in innovative industries is
dynamic in nature, the literature has so far ignored the possibility of collusion in investment levels.
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On the other hand, the existing literature on collusion focuses exclusively on collusion in transitory
economic variables such as prices and quantities. This article takes a step towards integrating these
two approaches and so providing a tool for analyzing competition in such dynamic markets.

In innovative industries, endogenous industry dynamics are important in that current invest-
ments in product or process innovation change not only current but also future market conditions.
Since it is difficult for a firm to “unlearn” the result of its investments in quality, these invest-
ments have a permanent impact on firms’ payoffs. This suggests that one should model dynamic
competition in product quality as a dynamic investment game rather than as an infinitely repeated
game since, in the latter, tangible market conditions are assumed to be stationary.

While there is a large literature on collusion in infinitely repeated games, dynamic investment
games—in which current actions have tangible effects on future payoffs—are much less well un-
derstood. From a series of folk theorems it is well known that collusive equilibria exist in infinitely
repeated games, provided the discount factor is sufficiently large. In a dynamic investment game,
however, a deviant firm can change future market conditions by outspending its rivals and thereby
gain a persistent strategic advantage. The existence of tacitly collusive underinvestment equilibria
in dynamic investment games is therefore not obviously ensured.

In this article, I analyze a dynamic game of investment in product quality. Such investment
might be thought of as quality-improving R&D (e.g., Sutton, 1998) or as persuasive advertising
(e.g., Sutton, 1991). I find that the existence of underinvestment equilibria depends crucially on
the presence of spillover effects in the appropriation of the benefits from investment. When there
are no spillovers from investment, underinvestment equilibria exist as long as the investment cost
function is sufficiently elastic, and the discount factor sufficiently large. However, when there are
strong spillovers, underinvestment equilibria fail to exist, even for discount factors arbitrarily close
to unity. To the extent that an increase in patent protection reduces spillovers from investment,
stronger patent protection may paradoxically result in less investment in equilibrium. The reason
is that firms have less incentive to invest when they cannot fully appropriate the benefits, and
this reduction in the incentives to invest destroys the punishment mechanism through which
underinvestment is supported in equilibrium. This should be of concern for antitrust authorities
since, as I show, underinvestment unambiguously reduces welfare.

On the positive side, the existence of underinvestment equilibria in my model (when there are
no spillovers) raises an important question for the analysis of market structure. Since R&D- and
advertising-intensive industries are “endogenous sunk cost” industries (Sutton, 1991), the question
arises whether the “finiteness property” or “nonfragmentation result” (Shaked and Sutton, 1987)
holds in my dynamic investment game; that is, whether or not in any free entry equilibrium, the
number of active firms remains finite, even as the market grows without bound.

Yet competition in endogenous sunk cost industries is dynamic in nature, and the nonfrag-
mentation result has been obtained solely in static stage-game models. It is an open question
whether this result still holds in dynamic models. In a static model, the finiteness property is
proved by showing that there always exists a profitable deviation for some firm in a large and
fragmented market. This deviation consists of a sufficient rise in investment outlays so as to
capture a positive market share. In a dynamic model, however, such a single deviation might be
followed by a severe (and possibly complex) “punishment” strategy by rival firms, making the
deviation potentially unprofitable. Thus it is not clear whether the finiteness property will still hold
in cases where underinvestment equilibria can be sustained through such punishment strategies.
Nevertheless I am able to show that the result is indeed robust: in all equilibria of my dynamic
investment game, the number of firms must remain finite—there is a lower bound to concentration
in such dynamic markets.

� Related literature. In addition to Sutton’s work on industrial market structure (Shaked and
Sutton, 1987; Sutton, 1991, 1998, forthcoming), this article is related to the literature on dynamic
investment games in industrial organization; see, for example, Reinganum (1989), Segal and
Whinston (2003) on dynamic R&D; Budd, Harris, and Vickers (1993) and Cabral and Riordan
(1994) on increasing dominance. This literature has widely ignored the possibility of tacit collusion
© RAND 2007.



mss # Nocke; art. # ??; RAND Journal of Economics vol. 38(1)

NOCKE / 229

in investment levels, sustained by the threat of an escalation in investment outlays. A notable
exception is the model of investment in capacity by Fudenberg and Tirole (1983).2 But in their
continuous-time game the existence of underinvestment equilibria is trivially ensured (even for
arbitrarily small discount factors) since, by construction, a deviant firm cannot leapfrog its rivals
and therefore never get a persistent strategic advantage. Moreover, as I will discuss, there is a subtle
but important difference between sustaining underinvestment in capacity and underinvestment in
product quality, which is closely connected to Sutton’s (1991) distinction between “exogenous”
and “endogenous” sunk cost industries. Once a firm has sufficient capacity to flood the entire
market, it has no incentive to build more capacity, no matter how large the discount factor, and
so capacity costs become less and less important (relative to revenues) as the discount factor
becomes large. In contrast, since consumers always prefer higher-quality products to lower-
quality products, noncooperative incentives to invest in quality increase without bound as the
discount factor becomes large. This implies that the threat of escalation in investment outlays—
which is used to sustain collusive underinvestment—becomes larger, the larger is the discount
factor. Consequently, it is possible to sustain collusive underinvestment in quality even though by
deviating a firm can get a persistent strategic advantage over its rivals. This article thus shows that
it is not innocuous to lump together different types of dynamic games under the general heading
“dynamic investment games.” Building on the framework developed by Ericson and Pakes (1995),
there is also a recent and growing literature that analyzes industry dynamics using numerical
methods; e.g., Gowrisankaran (1999) on horizontal mergers, Besanko and Doraszelski (2004) on
capacity investment, and Doraszelski and Markovich (2005) on advertising. Restricting attention
to Markov-perfect equilibria, this literature does not consider collusion. Two recent exceptions
are Fershtman and Pakes (2000) and de Roos (2004). However, these authors analyze collusion in
transitory economic variables (prices or quantities) that do not affect tangible market conditions,
and they therefore need to introduce an extraneous state variable that indicates whether a firm has
deviated in the past. Building on Fudenberg and Tirole (1983), I show that collusion in investment
levels can be sustained even when restricting attention to Markov-perfect equilibria, and even
without artificially expanding the state space.

The article is laid out as follows. In Section 2, I present the basic two-firm version of the
model when there are no spillovers. The noncollusive benchmark equilibrium and the existence
of collusive underinvestment equilibria are analyzed in Section 3. In Section 4, I compare welfare
in the different types of equilibria. In Section 5, I introduce spillovers into the model, and re-visit
the existence of collusive underinvestment equilibria. In Section 6, I turn to the analysis of market
structure, and investigate whether the two-firm underinvestment equilibria are stable with respect
to further entry, independently of market size and entry costs. In Section 7, I analyze whether the
finiteness property holds in the dynamic game, despite the existence of underinvestment equilibria.
Finally, Section 8 concludes. Proofs not found in the Appendix can be found at the Web Appendix
(www.rje.org/main/sup-matl.html).

2. The basic model
� In this section, I present the basic dynamic model without spillovers. There are two firms,
each offering one variety of a quality good. In each period, firms first decide how much to invest.
Then, they compete in quantities. A firm’s investment persistently raises consumers’ willingness-
to-pay for the firm’s offering, and so improves the firm’s competitive position relative to that
of its rival. Under my preferred interpretation (which I will henceforth adopt), investment is in
quality-improving R&D (with deterministic outcome) as, for example, in Sutton (1998). Under
my alternative interpretation, which the reader may keep in mind, investment is in persuasive
advertising or in the stock of “goodwill.”3 In this section, I do not allow for entry of a third firm.

2 Dutta (1995) provides an approximate folk theorem for stochastic games. Nevertheless, as I will show, underin-
vestment cannot be sustained as an equilibrium outcome in my model if there are strong spillovers, no matter how large
the discount factor.

3 The goodwill approach to advertising goes back to Nerlove and Arrow (1962).
© RAND 2007.
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The topic of potential entry, which is essential for the analysis of market structure, will be taken
up in Sections 6 and 7.

Consider a dynamic infinite-horizon version of Sutton’s (1991) model of investment in
product quality. Time is discrete and indexed by t . There are two firms, i = 1, 2, and N consumers
indexed by �. Consumer preferences are defined over a quality good, produced in the industry
under consideration, and an ‘outside good’ (or Hicksian composite commodity) whose price and
attributes are assumed to be constant over time. There are two varieties of the quality good on
offer, one by each firm. Consumers value quality. Specifically, consumer �’s utility in period t is
given by

U �(x�,1
t , x�,2

t , y�
t ) =




α� ln

(
2∑

i=1
ui

t x
�,i
t

)
+ y�

t if
2∑

i=1
ui

t x
�,i
t > 0,

−∞ otherwise,

(1)

where x�,i
t ≥ 0 and y�

t ≥ 0 are the quantities consumed of firm i’s variety of the quality good and
the outside good, respectively; ui

t is the quality of firm i’s offering in period t , and α� > 0 is a
parameter that measures the intensity of consumer �’s preferences for the quality good. Consumer
income in each period is denoted by m�. I assume m� > α�, which ensures that each consumer �

consumes a positive amount of the outside good. The quality index is normalized so that the basic
version of the quality good is of quality 1, i.e., ui

t ≥ 1. Note that, for x�,i
t > 0, utility is strictly

increasing in quality ui
t .

In the quality good industry, firm i’s period-t cost of investment in quality improvement is
given by

F(ui
t ; ui

t−1) = F0
(
ui

t
)β − F0

(
ui

t−1
)β

, (2)

where F0 > 0 and β ≥ 2 are parameters that measure the effectiveness of spending in raising con-
sumers’ willingness-to-pay. (The assumption β ≥ 2 ensures that the firm’s investment problem is
well behaved.) Without loss of generality, normalize the cost parameter F0 ≡ 1. The effectiveness
of quality investment is subject to diminishing returns; there are no “adjustment costs.” Observe
that F(u; u) = 0: investment costs are zero if a firm does not raise the quality of its product.
Further, assume that quality does not depreciate, and ui

t ≥ ui
t−1. Both firms have constant and

strictly positive marginal costs of production, c > 0, which are independent of quality.
The timing of the game is as follows. In each period, there are two stages. In the first stage,

firms 1 and 2 simultaneously decide whether and how much to invest in quality improvement,
and incur the fixed investment outlays. In the second stage, the two firms simultaneously decide
how much to produce (quantity competition); consumers, taking price as given, decide how much
to consume of each product, and prices are such that markets clear. Firm i’s second-stage profit
in period t is therefore given by (pi

t − c)xi
t , where pi

t and xi
t are price and quantity, respectively;

firm i’s net profit in period t is then (pi
t − c)xi

t − F(ui
t ; ui

t−1).
Consumers maximize the discounted value of per-period utility, taking the sequence of prices

and qualities as given. There is no saving or storing. Consequently, consumers’ decision problem
simplifies to myopic period-by-period utility maximization. Firms maximize the discounted sum
of profits. The common discount factor is denoted by δ ∈ (0, 1). All parameters of the model, and
all moves in past periods and stages, are assumed to be common knowledge.

In the equilibrium analysis, I confine attention to Markov strategies that depend on the
tangible state only, and so the relevant solution concept is that of Markov perfect equilibrium
(MPE). Recall that every MPE is a subgame-perfect equilibrium (SPE), even when strategies are
not restricted to be Markov. The idea of this approach is that history should influence current
actions only if it has a direct effect on the current environment, but not because players believe
that history matters. (In the spirit of this approach, I refrain from introducing extraneous state
variables that keep track of past deviations from equilibrium play.) Furthermore, the Markov
restriction greatly simplifies the equilibrium analysis; as Shapiro (1989) notes, it allows me to
© RAND 2007.
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focus on strategic aspects of commitment. (For further justification of the approach, see Maskin
and Tirole, 1988.)

At each decision node, the state of the industry can be summarized by the current pair of
qualities (u1, u2) ∈ [1,∞)2. Firm i ’s (pure) Markov action rule at stage 1 in period t is a mapping
si : (u1

t−1, u2
t−1) �−→ ui

t ∈ [ui
t−1,∞); at the second stage of the same period its action rule is a

mapping s̃i : (u1
t , u2

t ) �−→ xi
t ∈ [0,∞).

3. Equilibrium analysis: escalation and underinvestment
� In this section, I turn to the equilibrium analysis of the basic model without spillovers. I
first show the existence of a noncollusive investment equilibrium in which firms engage in an
escalation of investment outlays. The central result of this section is developed later in this section,
where I show the existence of a collusive underinvestment equilibrium. Underinvestment can be
supported in equilibrium by the credible threat of escalation in case of deviation, even though by
deviating a firm can get a persistent strategic advantage over its rival.

� Competition in quantities. Consider first the second stage in any given period. Since
quantity choice does not affect future payoff-relevant variables (qualities), the Markov restriction
allows me to analyze the quantity-setting game as a one-shot game. It is then straightforward to
solve for the Nash equilibrium in quantities.

Lemma 1. For any state (u1, u2), there exists a unique stage-2 Nash equilibrium. Firm i’s equi-
librium gross profit is given by

π i (u1, u2) = S
(

ui

u1 + u2

)2

, (3)

where S ≡
∑2

i=1 pi xi =
∑N

�=1 α� is a measure of market size.4 In equilibrium, consumer �’s
period-t utility is equal to

U �(u1
t , u2

t ) = α� ln
{

α�

c

(
u1

t u2
t

u1
t + u2

t

)}
+ m� − α�. (4)

In equilibrium, each firm sets the same quantity, and prices adjust such that each consumer
is indifferent between the two varieties. The lemma shows that firm i’s stage-2 profit depends on
ui/u j , the ratio of qualities; multiplying both qualities by the same factor does not affect profits.
The model thus allows me to focus on the business-stealing effect of investment. Observe also
that each firm’s stage-2 equilibrium profit has the appealing property that it is increasing in the
firm’s own quality, and decreasing in the rival’s quality; this differs from models of pure vertical
product differentiation.5

� Dynamic investment: escalation. Having solved for stage-2 equilibrium as a function of the
pair of current qualities, the dynamic game can now be analyzed as an infinite-horizon investment
game in which, in each period, the two firms simultaneously invest in quality, and firm i’s payoff
in period t is given by

�i (u1
t , u2

t ) = π i (u1
t , u2

t ) − F(ui
t ; ui

t−1). (5)

Infinite-horizon dynamic games are notoriously difficult to analyze since they neither have
a stationary structure (like infinitely repeated games), nor can be solved by backward induction

4 What matters for firms’ investment choice is only the ratio S/F0. Given the normalization of F0, market size S
should henceforth be interpreted relative to this cost parameter.

5 If I introduced horizontal product differentiation (in addition to potential quality differences), then the solved-out
second-stage profit function would share the same qualitative features under price and quantity competition: each firm’s
gross profit would increase in its own quality, and decrease in its rival’s quality.
© RAND 2007.



mss # Nocke; art. # ??; RAND Journal of Economics vol. 38(1)

232 / THE RAND JOURNAL OF ECONOMICS

(like finite-horizon games). However, a class of subgame-perfect equilibria can be found in my
game by first viewing each firm’s sequence of investment decisions as a single-player dynamic
optimization problem, holding the quality of the other player fixed. In this way, I can determine
a region in the space of qualities (state variables) such that neither firm wants to invest further,
given that its rival will never invest again. Since this region is associated with high quality levels,
I can then, in a backward induction fashion, proceed to determine equilibria for subgames starting
at lower quality levels.6

Suppose that the current quality of firm i’s offering is given by ui
−1 ≥ 1. Holding firm j’s

quality u j fixed forever, firm i ’s optimization problem is then given by

max
{ui

τ≥ui
τ−1}

∞∑
τ=0

δτ�i (u1
τ , u2

τ ), (6)

where u j
τ = u j for all τ ≥ 0. Rewriting, the program becomes

max
{ui

τ≥ui
τ−1}

∞∑
τ=0

δτ

{
S

(
ui

τ

ui
τ + u j

)2

− (1 − δ)
(
ui

τ

)β

}
+

(
ui
−1

)β
.

Due to the additive separability of the investment cost function, the dynamics are conveniently
simple: given that its rival will never invest again, it is optimal for firm i to do all its investment at
once, and then cease investing forever. To see this, note that the optimal choice of ui

τ maximizes
the expression in curly brackets, and is thus independent of time τ . Firm i’s optimization problem
can thus be written as

max
ui≥ui

−1

S
1 − δ

(
ui

ui + u j

)2

−
(
ui)β +

(
ui
−1

)β
. (7)

I call the solution to (7) firm i’s “stationary best reply to u j .”

Lemma 2. Firm i’s stationary best reply to u j equals its current quality ui
−1 if

2S
1 − δ

ui
−1u j

(ui
−1 + u j )3 − β(ui

−1)β−1 ≤ 0,

and the unique solution û(u j ) to the first-order condition of (7),

2S
1 − δ

û(u j )u j

(̂u(u j ) + u j )3 − β
(̂
u(u j )

)β−1 = 0 (8)

otherwise. Hence, firm i’s stationary best reply to u j is given by max{ui
−1, û(u j )}.

I call û(·) the “interior stationary best-reply function.” Due to symmetry, this function coin-
cides for both firms.

Lemma 3. There is a unique intersection of the two interior stationary best-reply curves in (0,∞)2.
This intersection corresponds to a symmetric state, (u, u), where u = û(u) is given by

u =
(

S
4(1 − δ)β

)1/β

. (8)

For u j ≥ u, firm i’s interior stationary best reply to u j , û(u j ), is strictly decreasing in u j .

6 This construction is facilitated by the assumption of no depreciation, which implies a unidirectional state-to-state
transition, ui

t+1 ≥ ui
t .
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FIGURE 1

STATIONARY REACTION CURVES

Lemma 3 implies that if (u1
−1, u2

−1) ≤ (u, u), then (u, u) is the unique intersection of the two
stationary reaction curves. The stationary reaction curves are illustrated in Figure 1.

I can now define four regions in the space of qualities. In region 1, U (1), the qualities of both
firms are above their respective interior best replies:

U (1) ≡
{
(u1, u2) ∈ [1,∞)2 | ui ≥ û(u j ), i, j = 1, 2, i 
= j

}
.

Graphically, this is the region above the outer envelope of the two interior best-reply curves.
Region 2 consists of the pairs of qualities such that firm 1’s quality is above u and firm 2’s quality
is below its interior best reply:

U (2) ≡
{
(u1, u2) ∈ [1,∞)2 | u1 ≥ u, u2 < û(u1)

}
.

Region 4 is defined in the same way as region 2, but firm indices are reversed. Finally, region 3
encompasses all states that are below the symmetric intersection:

U (3) ≡
{
(u1, u2) ∈ [1,∞)2 | ui < u, i = 1, 2

}
.

I am now in the position to determine an MPE of the dynamic investment game, starting
from any state of the industry.

Proposition 1. The following set of mappings from the current state, (u1
t−1, u2

t−1), to the space of
feasible actions, [ui

t−1,∞), induces a pure strategy for each firm i . The induced strategy profile,
�esc, forms an MPE starting from any state.

(i) If (u1
t−1, u2

t−1) ∈ U (1), then si (u1
t−1, u2

t−1) = ui
t−1, i = 1, 2 (no investment).

(ii) If (u1
t−1, u2

t−1) ∈ U (2), then s1(u1
t−1, u2

t−1) = u1
t−1, and s2(u1

t−1, u2
t−1) = û(u1

t−1) (only
firm 2 invests).

(iii) If (u1
t−1, u2

t−1) ∈ U (3), then si (u1
t−1, u2

t−1) = u, i = 1, 2 (both firms invest up to u).

(iv) If (u1
t−1, u2

t−1) ∈ U (4), then s1(u1
t−1, u2

t−1) = û(u2
t−1), and s2(u1

t−1, u2
t−1) = u2

t−1 (only
firm 1 invests).

Proof. Per-period net profits, �i (u1
t , u2

t ), are bounded above (by S) and firms discount future
profits. Hence, the one-stage deviation principle for infinite-horizon games applies (Fudenberg
© RAND 2007.
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and Tirole, 1991): it is impossible to gain by an infinite sequence of deviations when there is no
profitable single one-stage deviation.

(i) Suppose first the current state satisfies (u1
−1, u2

−1) ∈ U (1). According to �esc, neither firm
invests in quality, and so the state of the industry stays forever at (u1

−1, u2
−1) ∈ U (1): no firm will

invest again along the equilibrium path. Note that since ui
−1 ≥ û(u j

−1), i = 1, 2, i 
= j , each firm i
chooses the stationary best reply to its rival’s quality u j

−1. Thus, by definition of a stationary best
reply, any deviation that does not induce the nondeviant rival to invest again in a future period
cannot be profitable. Recall that a firm’s stage-2 profit is decreasing in its rival’s quality. This
implies that the payoff from a deviation that induces the nondeviant rival to invest in some future
period is bounded from above by the payoff that the deviant firm would obtain if its nondeviant
rival did not invest again.7 Hence, such a deviation cannot be profitable either.

(ii) Suppose now the current state satisfies (u1
−1, u2

−1) ∈ U (2). (The argument for case (iii),
(u1

−1, u2
−1) ∈ U (4), is analogous.) According to �esc, only firm 2 invests by choosing quality

u2
0 = û(u1

−1), the state of the industry moves to (u1
−1, û(u1

−1)) ∈ U (1), and stays there forever:
no firm will invest again along the equilibrium path. Note that each firm chooses the stationary
best reply to its rival’s (new) quality: firm 2 chooses u2

0 = û(u1
−1) > u2

−1, while firm 1 chooses
u1

0 = u1
−1 ≥ u ≥ û(u2

0). Hence, using the same argument as in case (i), there is no profitable
deviation.

(iv) Finally, suppose the current state satisfies (u1
−1, u2

−1) ∈ U (4). In this case, the strategy
profile �esc prescribes that both firms invest up to quality u, and the state of the industry stays
forever after at (u, u) ∈ U (1): neither firm invests again along the equilibrium path. Note that each
firm i chooses its stationary best reply to its rival’s (new) quality: û(u) = u > ui

−1. Hence, using
the same argument as in case (i), there is no profitable deviation.

Comparative statics results are easily obtained. Investment along the equilibrium path is
weakly increasing in the discount factor δ and market size S, and weakly decreasing in the cost
parameter β. In the remainder of the article, the investment equilibrium

∑esc will serve as the
benchmark noncollusive equilibrium. I will call “underinvestment equilibrium” any equilibrium
that exhibits less investment along the equilibrium path than this benchmark equilibrium.

� Dynamic investment: underinvestment. Along the equilibrium path induced by strategy
profile �esc, each firm engages in an “escalation” of investment outlays up to quality u if the
current state is “below” (u, u). In particular, if the current state is (u, u) < (u, u), then the state
of the industry will move to (u, u), and stay there forever, even though both firms would prefer
to remain at (u, u). (Since the stage-2 profit function, (3), depends on the ratio of qualities only,
the stage-2 profit is the same in both states but, of course, moving to the higher state involves
spending on R&D or advertising.) That is, both firms have an incentive to coordinate not to invest
at all in order to avoid an escalation of investment outlays, which is wasteful from their point of
view.

Since I have established the existence of an MPE exhibiting escalation of investment, it
might be possible to support tacitly collusive equilibria, exhibiting little or no investment, by
the threat of escalation in case of deviation. Formally, I consider a (symmetric) strategy pro-
file, denoted by �coll(u), u < u, that is induced by the following action rules. Given an ini-
tial state (u1

−1, u2
−1) ≤ (u, u) < (u, u), si (u1

−1, u2
−1) = u. Moreover, si (u, u) = u. However, if

(u1
t−1, u2

t−1) /∈ {(u, u), (u1
−1, u2

−1)}, then si (u1
t−1, u2

t−1) is the same as under �esc. That is, �coll(u)
prescribes that, starting from some initial state, each firm invests up to quality level u; in state
(u, u), no firm invests any further; in any other state, each firm chooses the same action as in the
noncollusive equilibrium �esc.

7 In fact, since û(u j ) is decreasing in u j for u j ≥ u and since ui
t ≥ ui

t−1, a firm cannot induce its rival to invest
in some future period: according to �esc, U (1) is an “absorbing” region.
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A priori, it is not obvious whether such an underinvestment equilibrium exists. First, suppose
the discount factor is zero and the current state is (u, u) < (u, u). Then, clearly, a deviation to
û(u) > u is profitable since the deviant firm does not care about future costs and stage-2 profits.
Hence, by continuity of discounted payoffs in δ, there exists a profitable deviation for discount
factors sufficiently small.

Second, suppose the current state is (u, u) < (u, u) and firm i deviates by investing up to
quality level u′ > u. According to strategy profile �coll(u), the nondeviant firm will then, in
the following period, react and invest up to û(u′), where û(u′) < u; no further investment will
occur. (By deviating to u′ ≥ û−1(u), firm i can even preempt any reaction by its rival.) Along
this path, the deviator will make, in each period, higher stage-2 profits than at (u, u). That is, by
deviating, firm i can get ahead of its rival, and ensure that it will always have the higher quality.
These additional stage-2 profits have to be compared with the associated investment costs that
have to be incurred only in the period of deviation. Intuitively, one may expect such a deviation
to be profitable for a sufficiently large discount factor. On the other hand, however, the higher is
the discount factor, the larger are the returns accruing from investment in quality, and hence the
higher is the level of investment associated with �esc. That is, the larger is δ, the more expensive
it is for the deviant firm to ensure itself a persistent strategic advantage over its rival.

The following proposition gives one of the main results of this article.

Proposition 2 (underinvestment). If the discount factor δ is sufficiently large, underinvestment
equilibria exist. In particular, suppose the initial state is given by (u1

−1, u2
−1) ≤ (u, u) < (u, u).

Then there is a threshold discount factor δ̂ ∈ (0, 1) , such that for all δ ∈ (̂δ, 1), strategy profile
�coll(u) forms an MPE.8

As argued above, the higher is the discount factor δ, the larger is the increase in the discounted
sum of stage-2 profits from deviating to a given quality level u′ > u. However, as δ increases,
the stationary reaction curves move outward. Hence, a deviation that ensures a fixed increase in
stage-2 profit for all future periods (i.e., a fixed quality ratio u′/̂u(u′) > 1 ) becomes increasingly
expensive as δ becomes large. The proposition shows that this cost effect dominates the stage-2
profit effect if the investment cost function is sufficiently elastic (β ≥ 2, as assumed).9

These results are reminiscent of the existence of “early stopping equilibria” in the dynamic
model of investment in capacity by Fudenberg and Tirole (1983).10 In their continuous-time
model, firms face linear investment costs and an exogenous upper bound on the feasible flow of
investment at each point in time.11 These assumptions trivially imply that a firm cannot leapfrog
its rival by deviating. Moreover, in a model of capacity investment, gross profits for both firms can
be higher at low capacity levels than at high levels since competition in quantities is more intense
when both firms have larger capacities. (This is an important difference to models of investment
in quality, where gross profits will, in general, not be higher in lower states; see the remark below.)
Hence, in Fudenberg and Tirole’s model, underinvestment equilibria trivially exist for all discount
factors. To see this, consider two points in the state space, “A” and “B,” where A exhibits lower
capacity levels than B, but higher stage-2 profits. Suppose further that the noncollusive benchmark
equilibrium requires firms to invest from A to B. Clearly, no investment at A can be sustained in
equilibrium, independently of the discount factor.

8 Under the conditions of the proposition, asymmetric underinvestment equilibria exist as well since stage-2 profits
are continuous in qualities.

9 Actually, the effect of an increase in β on the profits from deviation is rather subtle; there are two opposing
effects. On the one hand, an increase in β makes the deviation to a fixed u′ more expensive; on the other hand, it makes
the response of the nondeviant rival less aggressive in that it decreases û(u′) for a given u′. For any fixed quality ratio
u′/̂u(u′) > 1, one can show that deviation profits are first increasing, and then decreasing, in β.

10 Reynolds (1987, 1991) re-visits Fudenberg and Tirole’s model in a linear-quadratic differential game framework,
where capacity depreciates over time.

11 That is, Fudenberg and Tirole assume the information lag to be extremely short (zero) relative to the speed of
investment, in contrast to my model. Their assumption seems to be more reasonable in the context of capacity investment
than in the case of investment in quality.
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Remark. There is a subtle but important difference between dynamic investment in capacity
and dynamic investment in quality. In the Appendix, I briefly discuss a discrete-time version of
Fudenberg and Tirole (1983) that allows for leapfrogging. As shown there, a firm will never want
to build more capacity than would be sufficient to serve market demand at a price equal to marginal
cost. Hence, investment levels are bounded from above and get dwarfed by the discounted sum
of gross profits as the discount factor becomes large, and so, as δ → 1, the stationary curves
converge to some limiting curves. As I show in the Appendix, sufficiently small capacity levels
can therefore not be sustained as a collusive equilibrium outcome by the threat of a reversion to
the noncollusive equilibrium in case of deviation, not even as the discount factor becomes large.

In contrast, in this model of investment in quality, each firm can get a competitive advantage
over its rival by offering a higher quality than its rival, no matter how large that rival’s product
quality. Since a firm’s incentive to achieve such a competitive advantage increases with the discount
factor, the stationary reaction curves do not converge to some limit curves as δ → 1, and investment
costs do not get dwarfed. Consequently, underinvestment in quality can be supported even though,
by deviating, a firm can ensure itself forever higher gross profits. As further discussed in footnote
20, this difference between investment in capacity and investment in quality is closely connected
to Sutton’s (1991) distinction between exogenous and endogenous sunk cost industries.12

In the analysis conducted so far, I have left out the important issue of potential entry. I will
generalize the model so as to allow for potential entry and an arbitrary number of active firms in
Sections 6 and 7. But before turning to the analysis of market structure, I will first analyze welfare
in the basic model and, then, introduce spillovers.

4. Welfare analysis
� The aim of this section is to compare “welfare” in the symmetric investment equilibrium
and in an arbitrary (symmetric) underinvestment equilibrium. Any action by antitrust authorities
is justified only if collusion in investment reduces welfare. As a welfare measure, choose the sum
of discounted profits and discounted utility; call this measure “net surplus.” In my setting, this
choice is natural and theoretically well justified since consumers have quasilinear preferences:
utility is linear in the outside numéraire good, and so there are no income effects of redistributing
profits to consumers.13

A priori it is not obvious whether or not net surplus is lower in an underinvestment equi-
librium. Clearly, consumers’ utility, prior to any redistribution of profits, is lower in an underin-
vestment equilibrium since consumers value quality. However, firms’ profits are unambiguously
greater in an underinvestment equilibrium since firms spend less on investment. Indeed, from the
viewpoint of a social planner, any investment outlays by a second firm are wasted, holding prices
fixed. (A social planner would set price equal to marginal cost, and only one (subsidized) firm
would engage in investment and production.)

Nevertheless, the following proposition shows that the welfare comparison is unambiguous.
But before stating and proving the proposition, I want to set the problem formally. Given an initial
state (u1

−1, u2
−1) and any feasible sequence of states, {(u1

t , u2
t )}∞t=0, net surplus along this path is

equal to
∞∑
t=0

δt

{
2∑

i=1
�i (u1

t , u2
t ) +

N∑
�=1

U �(u1
t , u2

t )

}
, (10)

where U �(·) and �i (·) are given by equations (4) and (5), respectively. (Implicitly, it is assumed
here that, in any state, both firms set the stage-2 Nash equilibrium quantities.) Assuming the initial

12 The point is the following. If a firm can already serve the whole market with its capacity, any further increase
in its capacity has no impact on the firm’s market share; this is the exogenous sunk cost case. In contrast, by outspending
its rivals in fixed R&D or advertising outlays, a firm can steal business from its rivals and thus increase its market share,
although the investment may not increase industry sales. This is the endogenous sunk cost case.

13 While important and well founded for investment in quality-improving R&D, such a normative analysis may
not be innocuous in the case of investment in goodwill.
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state satisfies (u1
−1, u2

−1) < (u, u), the equilibrium path associated with the noncollusive in-
vestment equilibrium �esc is (u1

t , u2
t ) = (u, u) for all t ≥ 0; in case of underinvestment equi-

librium �coll(u), it is (u1
t , u2

t ) = (u, u) for all t ≥ 0, where by definition of underinvestment,
max{u1

−1, u2
−1} ≤ u < u.

Proposition 3. In the noncollusive investment equilibrium �esc net surplus is higher than in any
symmetric underinvestment equilibrium �coll(u), where max{u1

−1, u2
−1} ≤ u < u.

The intuition behind the result is the following. Even in a second-best world where two
firms compete à la Cournot and the quality level is constrained to be identical for both firms, the
noncollusive investment equilibrium �esc exhibits too low a level of investment; this is true despite
the presence of a business stealing effect. The reason is that the duopolists capture only a relatively
small part of the surplus from any increase in quality, and thus invest too little. Consequently, the
problem of underinvestment is even more severe in any collusive underinvestment equilibrium
�coll(u), u < u.

5. Spillovers and underinvestment
� So far I have assumed that a firm’s investment cost function, F(ui

t ; ui
t−1), depends on its

own quality level only. However, spillover effects are a pervasive phenomenon in many markets
as firms can often cheaply copy their rivals’ products.14 To highlight the effects of spillovers on
the incentives for firms to invest and to collude, I analyze in this section the case where there are
no contemporaneous spillovers, but full spillovers after one period.

I now assume that each firm can costlessly “copy” its rival’s quality of last period. This
means that spillovers are asymmetric in that a low-quality firm benefits from the investment of
a high-quality firm, but not vice versa. Formally, the payoff-relevant state at the start of period
t is now given by (umax

t−1, umax
t−1), where umax

t−1 ≡ max{u1
t−1, u2

t−1}, i.e., it lies on the 45◦-line in
(u1, u2)-space. To shorten notation, denote the state by the scalar umax

t−1. Firm i’s investment cost
function (2) is now replaced by

F(ui
t ; umax

t−1) =
(
ui

t
)β −

[
umax

t−1
]β

,

where ui
t ≥ umax

t−1.
Intuition may suggest that the presence of spillover effects makes tacit collusion “easier” to

sustain (supportable for lower discount factors) since, in the long run, firms will always end up
in a symmetric state: by deviating to a high-quality level a firm can no longer ensure itself higher
stage-2 profits ad infinitum than in any (symmetric) underinvestment equilibrium. Proposition 4
below shows, however, that this intuition is incorrect; in fact, the opposite result obtains.

I proceed along the lines of my earlier analysis. In the presence of spillovers, firm i’s stationary
best reply to u j

0 is the solution to the following dynamic optimization problem:

max
{ui

τ≥umax
τ−1}

∞∑
τ=0

δτ�i (
u1

τ , u2
τ

)
,

where u j
τ = umax

τ−1 for τ ≥ 1, and �i (u1
τ , u2

τ ) = π i (u1
τ , u2

τ ) − F(ui
τ ; umax

τ−1). Firm i’s stationary best
reply is then the unique solution to the following program:

max
ui

0≥umax
−1

S

(
ui

0

ui
0 + u j

0

)2

− (ui
0)β + [umax

−1 ]β +
δ

1 − δ

S
4

, (11)

where the last term is the discounted sum of stage-2 profits from τ = 1 onward that arise when both

14 For a survey on spillovers and R&D, see de Bondt (1997). See also the literature on R&D cartels and joint
ventures, e.g., d’Aspremont and Jacquemin (1988), Kamien, Muller, and Zang (1992), and Kesteloot and Veugelers
(1995).
© RAND 2007.



mss # Nocke; art. # ??; RAND Journal of Economics vol. 38(1)

238 / THE RAND JOURNAL OF ECONOMICS

firms offer the same qualities. As in the absence of spillovers, one can show that there is a unique
intersection of the interior stationary best-reply curves, namely at (u, u), where the symmetric
quality level u is now given by

u =
(

S
4β

) 1
β

.

Comparing this expression with equation (8), I observe that u would assume the same value as in
the absence of spillovers if the discount factor were zero.

Since the payoff-relevant state at the start of each period lies on the 45◦-line in the state
space, I have to modify the definitions of strategy profiles �esc and �coll(u) accordingly. The
noncollusive benchmark strategy profile �esc′ is now induced by the following set of action rules:

(i) If umax
t−1 < u, then si (umax

t−1) = u, i = 1, 2.

(ii) If umax
t−1 ≥ u, then si (umax

t−1) = umax
t−1, i = 1, 2.

Analogously to �coll(u), the collusive strategy profile �coll ′ (u), u < u, is defined as follows:
if umax

t−1 ≤ u < u, then si (umax
t−1) = u, i = 1, 2; otherwise si (umax

t−1) is the same as under �esc′ .
I can now state and prove another main result of the article.

Proposition 4. In the presence of spillovers, there exists a unique MPE: the noncollusive invest-
ment equilibrium �esc′ . Underinvestment cannot be sustained in equilibrium. In particular, the
collusive strategy profile �coll ′ (u) does not form an MPE.

The intuition for Proposition 4 may be explained as follows. The existence of spillover
effects reduces each firm’s (noncooperative) incentive to invest, holding fixed its rival’s quality.
Consequently, the noncollusive investment equilibrium �esc′ exhibits low quality levels in the long
run, relative to the investment equilibrium in the absence of spillovers. But any underinvestment
equilibrium can only be enforced by the credible threat of escalation. In the presence of spillover
effects, however, this threat is rather blunt.

Let me compare the equilibrium investment level when there are spillovers to the investment
level when there are no spillovers. Clearly, if firms do not collude in the latter case, then the
investment level is higher than in the case with spillovers, holding fixed all parameters.15 But if
firms do underinvest in the absence of spillovers, then the equilibrium investment level can be
higher in the presence of spillovers. To see this, suppose the current state is given by (u, u) and
choose parameters such that u > u in the presence of spillovers. Then, if the discount factor is
sufficiently close to unity, there exists an equilibrium in the absence of spillovers such that no
firms raises its quality level above u.

To the extent that firms invest in quality-improving R&D, Proposition 4 has important im-
plications for the literature on patents. A recurrent theme throughout the whole literature is that
better patent protection raises firms’ incentives to invest in R&D, and will hence result in higher
equilibrium levels of investment. In a world where technological spillovers are present, one can
interpret my model without spillovers as representing the case of infinite patent length, while
the extension with spillovers corresponds to the case of short patent length. As I have shown, a
shorter patent length can lead to higher equilibrium spending on R&D, even though—or rather
because—it reduces the incentives to invest, and hence destroys the mechanism through which
underinvestment can be supported. In light of the welfare analysis conducted in the last sec-
tion, this suggests that, for any given discount factor, there exists an “optimal” patent length that
gives maximal incentives to invest but is just short enough to prevent firms from colluding in
investment.16

15 This result on noncollusive investment levels is consistent with many other models of R&D, where an increase
in the level of spillovers reduces each firm’s incentive to invest. However, if an increase in own R&D spending allows a
firm to benefit more from its rivals’ R&D efforts, as in the model of “absorptive capacity” by Cohen and Levinthal (1989),
then an increase in spillovers may have an additional countervailing effect.

16 Indeed, suppose there are no spillovers (complete patent protection) for T periods after the investment, and full
spillovers (no patent protection) thereafter. It is possible to show that in the limit as δ → 1, collusive underinvestment
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Remark. In the limit as the discount factor becomes large, each firm’s average payoff in the
noncollusive equilibrium approaches the one along an (unsustainable) underinvestment path. To
see this, suppose the current state is (u, u) < (u, u). If firms could sustain “no investment” at
(u, u), which they cannot even for δ large, then each firm’s average (per-period) payoff would be
S/4. In the unique MPE, �esc′ , each firm’s average payoff is S/4 − (1 − δ){uβ − uβ}, which
converges to S/4 as δ → 1. Does this mean that the unsustainability of underinvestment in the
presence of spillovers has no important economic implications? The answer is no: even in the limit
as δ → 1, consumers are (potentially much) better off in state (u, u) than in state (u, u) < (u, u).

6. Market structure: potential entry
� Let me now turn to the analysis of market structure by taking up the issue of potential
entry that has so far been kept aside in the analysis. The question is whether an underinvestment
equilibrium (in which incumbents make large profits) is stable with respect to entry. For this
purpose, I extend the basic model by introducing an additional stage in each period at which
further entry can occur. The aim is then to investigate whether the incumbents can successfully
deter further entry—no matter how large the market—by threatening to engage in an escalation
of investment outlays if entry were to occur. This question is of interest for two reasons. First,
it relates to the robustness of the two-firm underinvestment equilibrium. Second, it addresses a
classic issue in the theory of market structure, namely whether or not concentration can be high
in large markets.

The basic model is modified as follows. There are three players: the incumbents, firms 1
and 2, and a potential entrant, firm 3. In each period, there are now three stages. At stage 1, the
potential entrant decides whether to enter or not if it has not yet decided to do so. If firm 3 decides
to enter, it has to pay an entry fee ε > 0. At stage 2, the firms that are present in the market
(the two incumbents, and firm 3 if it has decided to enter in the current or in an earlier period)
decide simultaneously whether and how much to invest in quality improvement. The potential
entrant starts up with “zero” quality; its investment cost function in the period of entry is given
by Fe(u) = uβ , and in all subsequent periods by (2). There are no spillovers. Finally, at stage 3,
firms compete simultaneously in quantities. Consumers’ utility is given by the natural extension
of (1) to three varieties of the quality good. As before, all past actions are assumed to be common
knowledge.

The equilibrium analysis proceeds along the lines of that in Section 3. In period t , the state of
the industry is given by the quality triple (u1

t , u2
t , u3

t ), where I adopt the convention that u3
t = −1

if firm 3 has not yet entered the market, and u3
t = 0 if firm 3 has entered the market but not yet

invested in quality. A pure-investment action rule is a mapping si : (u1
t−1, u2

t−1, u3
t−1) �→ ui

t ; a pure
output action rule is a mapping s̃i : (u1

t , u2
t , u3

t ) �→ xi
t . As before, the minimum quality (necessary

to make positive sales) is equal to one; therefore, the initial investment outlays necessary to
produce the basic version of the quality good are equal to one.

As to the equilibrium analysis of the output stage, it is straightforward to show that, in any
state (u1

t , u2
t , u3

t ), there exists a unique stage-3 Nash equilibrium in pure strategies. If firm 3 has
not yet entered the market, or not invested, then its stage-3 profit is zero, and the incumbents’
equilibrium profits are given by (3). Otherwise, firm i’s stage-3 equilibrium profits are given by

π i (u1
t , u2

t , u3
t ) =




S

(∑3
k=1 ui

t/uk
t − 2∑3

k=1 ui
t/uk

t

)2

if
∑3

k=1
umin

t
uk

t
≥ 2

S

(
ui

t

ui
t + u j

t

)2

if
∑3

k=1
umin

t
uk

t
< 2 and ui

t , u j
t > umin

t (i 
= j)

0 if
∑3

k=1
umin

t
uk

t
< 2 and ui

t = umin
t ,

(12)

cannot be supported for T sufficiently small, but can be supported for T sufficiently large. On the other hand, the
noncollusive investment level u increases with patent length T .
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where umin
t = min

{
u1

t , u2
t , u3

t
}
.17 Hence, in the three-firm equilibrium there exists a “quality

window” such that a firm makes zero sales if its quality is too low relative to its rivals’ qualities.
But there will always be at least two firms making positive sales in equilibrium, which explains
why there is no quality window in the two-firm case. Observe that π i (u1

t , u2
t , u3

t ) is continuous in
all its arguments, despite the quality window.

The resulting subgame after entry of firm 3 can, in principle, be analyzed analogously to the
two-firm investment game, given the stage-3 profit function (12). However, entry is endogenous
and might be deterred by the incumbents. I do not attempt here to investigate the three-firm case
comprehensively. Rather, I focus on the question whether or not the two incumbents can be in
a two-firm underinvestment equilibrium, and successfully deter entry by credibly threatening
to engage in an escalation of investment outlays in case of entry. The following proposition
summarizes the results.

Proposition 5. There exists a β̂ > 2 such that if β ∈ [2, β̂], any two-firm underinvestment
equilibrium is stable with respect to entry by a third firm. In particular, for δ sufficiently large, there
exists an MPE such that (u1

t , u2
t , u3

t ) = (u, u,−1) for all t , and u ≤ u. This is true independently
of market size and entry costs.

The proposition shows that the same mechanism that supports underinvestment in equilibrium
can be sufficient to deter further entry. It illustrates that concentration can be high even in very
large markets. The intuition for this result is closely related to the nonfragmentation result for
endogenous sunk cost industries to which I turn in the next section. Before moving on, however,
I briefly explain why underinvestment is stable with respect to further entry if β, the elasticity of
the investment cost function, is small (β ≤ β̂) rather than large (β > β̂). To see this, suppose that
if the third firm were to enter the market, the two incumbents would (in the same period) invest
up to the symmetric noncollusive quality u, as given by equation (8), and then cease investing
forever. From equation (12), for the entrant to make positive gross profits, it would need to offer a
quality of at least u/2 (otherwise, consumers would not purchase the good even when offered at
marginal cost). But the investment spending necessary to achieve quality u/2 is S[8(1 − δ)β]−1,
which is decreasing in β (even though an increase in β means lower marginal costs of raising
quality, holding quality fixed). Intuitively then, if β is not too large, the third firm would be unable
to recoup its investment outlays.

7. Market structure: nonfragmentation
� In this section, let me turn to the relationship between market size and concentration when
there is free entry. This issue is the subject of Sutton’s (1991) work, where he introduces the
distinction between “exogenous” and “endogenous sunk cost industries.” In exogenous sunk cost
industries, where R&D and advertising do not play an important role, Sutton predicts that the
lower bound to concentration converges to zero as market size becomes large. On the other hand,
in endogenous sunk cost industries, where R&D or advertising outlays are significant, the lower
bound to concentration is bounded away from zero, no matter how large the market. That is,
in contrast to exogenous sunk cost industries, endogenous sunk cost industries cannot become
arbitrarily fragmented, not even as market size tends to infinity.18

To this date, the nonfragmentation (or nonconvergence) result for endogenous sunk cost
industries has been obtained almost solely in static games. 19 According to Sutton (1998), the
open question is whether it still holds in dynamic investment games like mine. In the following, I

17 For a general proof of the n-firm case, see the proof of Lemma 4 in the Web Appendix.
18 For a precise statement of the conditions under which the “nonfragmentation result” for endogenous sunk cost

industries holds in static oligopoly models, see Shaked and Sutton (1987) and Sutton (1991). In the case of pure vertical
product differentiation and price competition, the finiteness result has been obtained by Shaked and Sutton (1983).

19 Two exceptions are in Hole (1997) and Sutton (1998). Hole uses the Pakes-McGuire algorithm to simulate a
stochastic dynamic model with incremental sunk costs. However, market size (and hence the average number of entrants)
is kept small. Sutton analyzes a rather special setting with spillovers, in which the issue of interest—namely the existence
of underinvestment equilibria—does not arise.
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give three arguments as to why it is not obvious that the nonfragmentation result carries over to
my dynamic investment game.

First, suppose that, for any given market size S, there exists a symmetric underinvestment
equilibrium in which all n active firms offer quality u in each period, where n is such that any
additional entrant would make an overall loss. Now, if this underinvestment equilibrium still
exists under free entry when the market becomes large, then I am back in an exogenous sunk
cost world, in which each firm has to pay an exogenous setup cost of ε + F(u). Consequently, the
nonfragmentation result would break down in this case. (Actually, one could allow quality u to
increase with S, and still obtain n → ∞ as S → ∞, unless u increases too fast with S.) Second,
in a static game, the nonfragmentation property is proved by showing that in a sufficiently large
and fragmented market, there always exists a profitable deviation for some firm. This deviation
consists of an escalation of fixed R&D or advertising outlays so as to capture a larger share of
the market.20 In a dynamic game, however, such a deviation may not be profitable since it can
trigger a future escalation of investment spendings by rival firms, which is detrimental for the
deviant firm’s profit. Third, and more generally, the nonfragmentation result makes a statement
about market structure in any equilibrium of the game. Since the set of equilibria in a dynamic
game is much larger, it is not clear whether the same property still holds for all equilibria of the
dynamic game.21

To address the issue of nonfragmentation, I need to modify the basic version of my dynamic
investment game. The time structure is as in Section 6; that is, there are three stages in each
period: entry, investment, and quantity competition. There is an initial period (say, 0) before
which there are no active firms, i.e., all firms are potential entrants in period 0. Entry costs as well
as the investment cost functions for a new entrant and for an incumbent are as in Section 6. The
consumers’ utility function can be generalized in an obvious way to an arbitrary number of firms
each offering one variant of the quality good. As before, the output stage in each period can be
analyzed as a one-shot game.

Lemma 4. In any state, there exists a unique stage-3 Nash equilibrium in quantities. Suppose
there are n active firms. Relabel the firms such that firm 1 offers the highest quality, u1, and firm
n the lowest quality, un . Then, in equilibrium, there is a quality window such that firms 1 to n
make only positive sales, where n is the maximum integer z ≤ n, such that

∑z
i=1(uz/ui ) > z − 1.

Firm i’s stage-3 equilibrium profit is given by22

π i (u1, . . . , ui , . . . , un) =




S

(
1 − n − 1∑n

j=1
(
ui/u j

)
)2

if i ≤ n

0 otherwise.

(13)

Using equation (13) as the reduced-form stage-3 profit function, I can now focus on the
analysis of investment strategies. For technical convenience, restrict attention to equilibria such
that all active firms offer the same quality along the equilibrium path, and such that the number
of active firms is nondecreasing over time. (In an early version of this article, I showed that the
key result of this section is robust to allowing for all asymmetric equilibria in which investment
occurs only in the first period; see Nocke, 1998.) Importantly, I allow for all the investment,
underinvestment, and entry deterring strategies considered earlier as well as for much more
complex strategies.

20 By offering a (much) higher product than its rivals, a firm can always ensure that it can obtain a larger market
share since consumers prefer higher-quality to lower-quality products if offered at the same price. This makes investment
in quality different from investment in capacity where a firm that invests in more capacity will not increase its market
share unless its capacity constraint was initially binding. Consequently, those industries where capacity investments are
important, but R&D and advertising are not, fall under the heading exogenous sunk cost industries.

21 The main result of the previous section, Proposition 5, can be seen as an example of nonfragmentation: two
firms are able to deter further entry, no matter how large the market, provided β ∈ [2, β̂]. However, this equilibrium is
not unique; there is another equilibrium in which the two incumbents acquiesce, and further entry takes place.

22 For notational convenience, I describe the current state by the quality tuple of active firms only.
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In a dynamic game, the lower bound to concentration for a given market size might be quite
different from that in a static game. The interesting open question is whether or not the asymptotic
properties are the same, namely that the number of active firms remains finite even as market size
tends to infinity. In the section on potential entry I have already seen that nonconvergence is a
possible outcome in this model; here, I ask whether or not it is a necessary outcome in that it
occurs in all equilibria. The following proposition gives the central result on market structure.

Proposition 6 (nonfragmentation). In any MPE, the number of active firms is bounded from
above, even as market size tends to infinity.

Proposition 6 is reassuring in that it shows the robustness of the nonfragmentation result to
the existence of underinvestment equilibria in dynamic games. It implies that the market share of
all firms is bounded away from zero, no matter how large the market. Depending on the discount
factor (and other parameters of the model), there may be a plethora of equilibria in the dynamic
game. While Proposition 6 shows that the number of active firms is bounded from above in all
equilibria, the proposition does not imply that underinvestment equilibria necessarily break down
when market size becomes large, as I have already seen in Section 6.

The proof of the nonfragmentation result for the dynamic investment game proceeds by
contradiction and may be sketched as follows. Suppose Proposition 6 did not hold and the market
became arbitrarily fragmented as market size becomes large. Since firms need to recover their fixed
investment outlays, this would imply that firms’ investment outlays grow less than proportionately
with market size, i.e., uβ/S → 0 as S → ∞. But then a firm might decide to deviate and invest
more than its rivals. In particular, if all of its rivals offered quality u (which could depend on
market size S), then a firm might offer, for example, quality u′ = [Su]1/(β+1). Since uβ/S → 0
as S → ∞, it would follow that u′/u → ∞ as S → ∞. Moreover, as the market becomes large,
the ratio between the deviation profit in the period of deviation and the equilibrium profit in the
same period would grow without bound. Hence, even the worst possible punishment that could be
inflicted on the deviant firm, namely zero profits in all subsequent periods, would not be sufficient
to make this deviation unprofitable. It follows that the number of firms must remain finite.

8. Conclusion
� In this article I have explored a dynamic game of investment in quality. It is quite distinct
from the industrial organization literature on collusion since here current investments change
future market conditions. Since by investing firms can get a persistent lead over their rivals,
the existence of tacitly collusive equilibria is no longer trivially ensured. In the first part of the
article I focused on the issue of existence of underinvestment equilibria when firms have strong
incentives to deviate and, thereby, to persistently improve their strategic position. In the second
part, I introduced potential entry into the model so as to address issues of market structure.

Using a state-space approach (and without introducing extraneous state variables summa-
rizing past play), I have shown that collusive underinvestment equilibria can be sustained in the
absence of spillovers. In contrast, when there are strong spillovers in the appropriation of the
benefits from investment, underinvestment equilibria fail to exist. This implies that a weakening
in the degree of patent protection can actually lead to more investment in equilibrium even though
(or, rather, because) it reduces the individual incentives to invest. Furthermore, I have shown that
underinvestment should be an issue of concern for antitrust authorities in that it unambiguously
reduces welfare. This is especially true since detecting tacit collusion in investment levels is likely
to be much more difficult than detecting tacit collusion in price or quantity setting.

The existence of underinvestment equilibria has raised the question whether one of the central
results on market structure in the IO literature, the nonfragmentation result for endogenous sunk
cost industries, breaks down in dynamic investment games. What has been at issue is that, in an
underinvestment equilibrium, firms do not engage in an escalation of fixed investment outlays;
but without an escalation mechanism at work, the finiteness property cannot hold. My main
result on market structure is reassuring: the nonfragmentation result is robust to the existence
of underinvestment equilibria. In all equilibria of the dynamic game, industry concentration is
bounded away from zero, no matter how large the market.
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Appendix

� The proof of Propositions 2, 4, and 6 follow. Proofs of Propositions 3 and 5, and Lemmas 1–4 may be found at
www.rje.org/main/sup-matl.html.

Proof of Proposition 2. Since the strategy profile �esc forms an MPE, it is sufficient to show that there is no single
profitable deviation when the current state is given by (u, u) or (u1

−1, u2
−1). Since si (u1

−1, u2
−1) = u and investment costs

are additively separable, it is immediate to see that there is no profitable deviation in the initial state (u1
−1, u2

−1) if there
is no profitable deviation in state (u, u). I can thus confine attention to state (u, u). The proof is organized as follows. I
first seek the optimal deviation for any player (due to symmetry, I can confine attention to firm 1), and then show that
the associated discounted sum of future profits, �dev, is not larger than the corresponding value in case of nondeviation,
�coll. I distinguish three cases.

Case 1. Firm 1, say, deviates in period t by raising its quality to u′, where u < u′ < u; that is, the state moves to (u′, u)
in period t . According to strategy profile �coll(u), both firms will then invest further in period t + 1, and the state of the
industry will be given by (u1

τ , u2
τ ) = (u, u) for all τ ≥ t + 1. The associated discounted sum of profits for the deviant is

equal to

�dev = S
(

u′

u′ + u

)2
− (1 − δ)(u′)β + uβ +

δ

1 − δ

S
4
− δuβ , (A1)

while in case of nondeviation it is given by �coll = S/[(1 − δ)4]. Maximizing �dev with respect to u′ gives a first-order
condition identical to (8); hence the condition is sufficient for a maximum. Note, however, that the unique positive solution
to (8) might be larger than u. (It is straightforward to show that this is indeed the case when u < (2 +

√
5)u; I am dealing

with this case in part (ii) of the proof. Hence, in the following I analyze the case when the reverse inequality holds. By
choosing δ sufficiently close to 1 this can always be ensured.) Denote the optimal value of u′ by u′(u). Then, from (8),
(1 − δ)[u′(u)]β = (2/β)S[u′(u)]2u/[u′(u) + u]3. Substituting (1 − δ)[u′(u)]β and u in (A1) gives

�dev = S
(

u′(u)
u′(u) + u

)2
− 2S[u′(u)]2u

β[u′(u) + u]3 + uβ +
δ

1 − δ

S
4

(
β − 1

β

)
,

which is continuous in δ. Now, multiplying both sides by (1 − δ), and taking the limit as δ goes to one, one gets

lim
δ→1

(1 − δ)�dev =
S
4

(
β − 1

β

)
<

S
4

= lim
δ→1

(1 − δ)�coll.

Hence, there exists a δ̂(i) < 1 such that for all δ ≥ δ̂(i) deviation is not profitable.

Case 2. Suppose now that, in period t , firm 1 deviates to a quality u′ such that û−1(u) > u′ ≥ u. In period t + 1, firm 2
will then react and raise its quality to û(u′), where u < û(u′) ≤ u. Hence, the sequence of states induced by the deviation
will be given by (u1

τ , u2
τ ) = (u′, u) for τ = t , and (u1

τ , u2
τ ) = (u′, û(u′)) for τ ≥ t + 1. The deviant’s discounted sum of

profits is thus equal to

�dev = S
(

u′

u′ + u

)2
− (u′)β + uβ +

δ

1 − δ
S

(
u′/̂u(u′)

u′/̂u(u′) + 1

)2
. (A2)

Maximizing this expression with respect to u′ yields the first-order condition for optimal deviation

2S
u′u

[u′ + u]3 − β(u′)β−1 + 2S
δ

1 − δ

u′
[

û(u′) − u′ dû(u′)
du′

]

[u′ + û(u′)]3 = 0, (A3)

where û(u′) is implicitly defined by (8), and dû(u′)/du′ can be obtained by implicit differentiation of (8):

dû(u′)
du′ = −

2S
1−δ

û(u′)[̂u(u′) − 2u′]
[u′ + û(u′)]4

2S
1 − δ

u′[u′ − 2û(u′)]
[u′ + û(u′)]4 − β(β − 1)[̂u(u′)]β−2

.

In order to reduce the dimensionality of the problem, let me define u′
λ such that û(u′

λ) = λu′
λ, where λ ∈ (0, 1]. For a

fixed λ, the first-order condition for the nondeviant’s best reply to u′
λ, (8), can then be rewritten as

2S
1 − δ

u′
λ(λu′

λ)
[u′

λ + λu′
λ]3 − β[λu′

λ]β−1 = 0.
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Solving for u′
λ gives

u′
λ =

(
2S

(1 − δ)β
1

λβ−2(1 + λ)3

)1/β

. (A4)

This enables me to calculate dû(u′)/du′ locally at u′ = u′
λ, as a function of λ:

dû(u′)
du′

∣∣∣∣
u′=u′

λ

= − λ(2 − λ)
2λ − 1 + (β − 1)(1 + λ)

, (A5)

which is strictly negative for λ ∈ (0, 1] and β ≥ 2: the higher is the deviant’s quality, the less will be invested by its rival.
I can interpret firm 1’s optimal deviation problem as a choice of λ. The deviant’s first-order condition, (A3), for the

optimal λ, denoted by λδ , can now be written as

2S
u′

λδ
u

[u′
λδ

+ u]3 − β(u′
λδ

)β−1 + 2S
δ

1 − δ

u′
λδ


λδu′

λδ
− u′

λδ

dû(u′)
du′

∣∣∣∣
u′=u′

λδ




[λδu′
λδ

+ u′
λδ

]3 = 0,

where u′
λδ

and dû(u′)/du′|u′=u′
λδ

are given by (A4) and (A5), respectively. Multiplying both sides by (1 − δ), taking the
limit as δ goes to one, and simplifying, one gets

ξ (λ1) ≡ λ
β

1 + λ
β−1
1 − 1 + β

β
λ1 − β − 2

β
= 0, (A6)

where λ1 = limδ→1 λδ . This is the first-order condition for the optimal λ as a function of β in the limit when δ → 1. Since
the sign of the coefficients in (A6) changes once if β ≥ 2, Descartes’ sign rule tells me that (A6) has exactly one (strictly)
positive root.23 Now, ξ (1) = 1/β, ξ (0) = (2 − β)/β ≤ 0 if β ≥ 2, and ξ ′(0) < 0. Hence, if β ≥ 2, there exists exactly
one λ1 ∈ (0, 1] such that ξ (λ1) = 0. Since an increase in u′ corresponds to a decrease in λ, and ξ (0) ≤ 0 and ξ (1) > 0,
(A6) defines indeed a maximum! The optimal choice of λ, in the limit when δ → 1, is therefore the unique λ1 ∈ (0, 1]
satisfying (A6).24 It is straightforward to show that λ1 is strictly increasing in β,25 and that λ1 → 1 as β → ∞.26.

Substituting u′ in (A2) by u′
λ1

, as given by (A4), and substituting û(u′) by λ1u′
λ1

, multiplying both sides of (A2) by
(1 − δ), and taking the limit as δ → 1, yields

lim
δ→1

(1 − δ)�dev =
S

(1 + λ1)2

(
1 − 2

βλ
β−2
1 (1 + λ1)

)

=
S

(1 + λ1)2

(
1 − 2

β + 1 + (β − 2)/λ1

)

=
S

(1 + λ1)2

(
(β − 1)λ1 + β − 2
(β + 1)λ1 + β − 2

)
≡ �̂dev(λ1, β),

where the second equality follows from the definition of λ1 in equation (A6). Observe that ∂�̂dev(λ1, β)/∂λ1 < 0. To
find a suitable lower bound on λ1, let me define

η(λ) ≡ λ2 − λ

β(β − 1)
− β − 2

β
.

23 It is straightforward to generalize Descartes’ sign rule, which has been developed for polynomials, to the case
when the powers are not necessarily integers, but (more generally) rational numbers. To see this, define ξ (x) ≡ a0 +
a1xb1 + · · · + an xbn , where bi = pi /qi and pi , qi ∈ N . Suppose q is the smallest common denominator of the bi ’s. Then,
ξ (x) can be rewritten as a polynomial: ξ (x) = a0 + a1 yb̃1 + · · · + an yb̃n , where y ≡ x1/q and b̃i ≡ qpi /qi ∈ N . As to
irrational β’s, one can show that, in this case, ξ (x) has exactly one sign change at some positive x for any real (rational
or irrational) β ≥ 2.

24 Here, I abstract from the lower bound on λ1, which is given by u/̂u−1(u).
25 Implicit differentiation of (A6) gives dλ1/dβ = −[(ln λ1)(λβ

1 + λ
β−1
1 ) + (λ1 − 2)/β2]/[βλ

β−1
1 + (β − 1)λβ−2

1 −
(β + 1)/β]. Clearly, the numerator of the right-hand-side expression is negative for λ1 ≤ 1. As to the denominator, (A6)
implies that λ

β

1 + λ
β−1
1 − (1 + β)λ1/β = (β − 2)/β ≥ 0 if β ≥ 2, and hence βλ

β−1
1 + (β − 1)λβ−2

1 − (1 + β)/β >

λ
β−1
1 + λ

β−2
1 − (1 + β)/β ≥ 0 if β ≥ 2. That is, the denominator is positive, and hence dλ1/dβ > 0, for β ≥ 2.

26 To see this, suppose otherwise that λ1 → k < 1 as β → ∞. Then, from (A6), it follows that ξ (λ1) → −k−1 < 0
as β → ∞. But this contradicts the definition of λ1.
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If β ≥ 2, there is a unique strictly positive λ̂1 such that η(̂λ1) = 0; it is given by λ̂1 = (β − 1)/β. Furthermore, I have
η(λ) ≥ ξ (λ) for all λ ∈ (0, 1], where ξ (λ) is defined as in (A6). Hence, λ̂1 ≤ λ1 and �̂dev(̂λ1, β) ≥ �̂dev(λ1, β) =
limδ→1(1 − δ)�dev.

Remark that if β = 2, then λ̂1 = 1/2, and �̂dev(1/2, 2) = 4S/27 < S/4 = limδ→1(1 − δ)�coll. One can show
that the total derivative of �̂dev(̂λ1(β), β) with respect to β is positive: the higher is the elasticity of the investment cost
function, the higher is the upper bound on the profits from deviation. Finally note that λ̂1(β) → 1 as β → ∞, and thus
�̂dev(̂λ1(β), β) →β→∞ S/4 = limδ→1(1 − δ)�coll. Hence, for all β ≥ 2, limδ→1(1 − δ)�dev < limδ→1(1 − δ)�coll.

Because of continuity in δ, there exists therefore, for any β ≥ 2, a threshold value δ̂(i i) < 1 such that for all δ ≥ δ̂(i i),
deviation is not profitable.

Case 3. Finally, suppose the deviant firm (firm 1, say) preempts any reaction by its rival. That is, in period t , firm 1
chooses a quality level u′ such that û(u′) ≤ u; in the induced subgame, the state of the industry will then be given by
(u1

τ , u2
τ ) = (u′, u) for all τ ≥ t .

Since û−1(u) > û(u) (where the inverse of û(·) is defined over the decreasing part of û(·) only), the deviant firm
chooses u′ such that û(u′) = u so that its rival is just preempted. That is, the optimal preemptive deviation, u′, is implicitly
defined by

φ(u′) ≡ 2S
1 − δ

uu′

(u + u′)3 − βuβ−1 = 0. (A7)

Now, φ(u) > 0 if and only if u < u (which is, of course, the relevant case of underinvestment, and can always be ensured
by choosing δ sufficiently large), limu′→∞ φ(u′) = −βuβ−1 < 0, and φ′(u′) < 0 for all u′ > u/2. Thus, if u < u,
there exists a unique u′, u′ > u, such that φ(u′) = 0. Define ψ(u′) ≡ u′/(u + u′), and note that ψ(u′) ∈ (1/2, 1), and
limu′→∞ ψ(u′) = 1. Equation (A7) can now be rewritten, and solved for u′:

u′ =
(

2S
(1 − δ)β

ψ(u′)
uβ−2

)1/2
− u.

The discounted sum of profits from deviation is then equal to

�dev =
S

(1 − δ)




(
2S

(1 − δ)β
ψ(u′)
uβ−2

)1/2
− u

(
2S

(1 − δ)β
ψ(u′)
uβ−2

)1/2




2

−
[(

2S
(1 − δ)β

ψ(u′)
uβ−2

)1/2
− u

]β

+ uβ ,

and, hence,

lim
δ→1

(1 − δ)�dev =



−∞ if β > 2
0 if β = 2
S otherwise.

Since β ≥ 2, there exists therefore a δ̂(i i i) < 1 such that for all δ ≥ δ̂(i i i), �dev < �coll. Q.E.D.

� A dynamic model of investment in capacity. I briefly sketch a dynamic game of investment in capacity to
illustrate the remark in Section 3. There are two firms, indexed by i ∈ {1, 2}, which produce a homogeneous good. Time
is discrete; firms have an infinite horizon, and employ a common discount factor δ. In each period, market demand for
the homogeneous good is D(p) = S(1 − p), where p is price and S market size. Timing in each period is as follows. At
the first stage, the two firms simultaneously decide how much to invest in capacity. Given current capacity ki

−1, firm i’s
cost of reaching capacity level ki ≥ ki

−1 is given by F(ki ; ki
−1). I assume that F is weakly increasing in its first argument

and weakly decreasing in its second argument. Capacity does not depreciate, and so ki
t ≥ ki

t−1 in every period t . At the
second stage, the two firms simultaneously decide how much output to produce. Each firm i’s output choice qi is subject
to the capacity constraint qi ≤ ki . The marginal cost of output is zero. However, in each period, a firm has to incur a
maintenance cost c per unit of current capacity. Following Fudenberg and Tirole (1983), I assume that c is sufficiently
large so that for the relevant range of capacity levels, each firm i optimally dumps its whole capacity on the market,
qi = ki . That is, firm i’s stage-2 equilibrium profit function is π i (k1, k2) = Ski (

1 − c − k1 − k2).
Firm i’s stationary best reply to capacity level k j is the solution to the following program:

max
ki≥ki

−1

Ski (1 − c − k1 − k2) − (1 − δ)F(ki ; ki
−1).

Since a firm has no incentive to build more capacity than is necessary to serve market demand at a price equal to marginal
cost, the solution satisfies ki ≤ 1−c (provided ki

−1 ≤ 1−c). Since the upper bound on capacity investment is independent
of the discount factor, investment costs are bounded from above. Hence, in the limit as δ → 1, firm i’s interior stationary
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mss # Nocke; art. # ??; RAND Journal of Economics vol. 38(1)

246 / THE RAND JOURNAL OF ECONOMICS

best reply to k j , k̂(k j ), is the solution to

max
ki≥ki

−1

Ski (1 − c − k1 − k2),

and so

k̂(k j ) =
1 − c − k j

2
.

The unique intersection of these limiting reaction curves is given by

(
k, k

)
=

(
1 − c

3
,

1 − c
3

)
.

For δ = 1, the noncollusive and collusive strategy profiles, �esc and �coll(k), can then be defined in the same way as in
the dynamic game of investment in quality.

Note that there is a subtle but important difference between investment in capacity and investment in quality when
the discount factor becomes large. In the capacity investment model, the interior stationary reaction curves converge to
some limiting curves as δ → 1. In contrast, in the quality investment game, the stationary reaction curves do not converge
to some limiting curves: in the case of investment in quality, each firm always has an incentive to offer a higher quality
than its rival, no matter how large the quality of its rival, and this incentive is increasing with the magnitude of the discount
factor. This difference gives rise to the following result.

Claim A1. For δ sufficiently large, underinvestment at any state (k, k) < ((1− c)/4, (1− c)/4) cannot be sustained as an
equilibrium outcome by the collusive strategy profile �coll(k).

Proof. Suppose the assertion is false. Then, there exists some k < (1− c)/4 such that �coll(k) forms an MPE. Since I am
interested in the limit as δ → 1, I define a firm’s average payoff as the firm’s discounted sum of future profits multiplied
by (1−δ). Consider now firm 1, say. If it does not deviate in state (k, k), its average payoff along the candidate equilibrium
path is Sk(1 − c − 2k). Suppose now that firm 1 deviates to k′ = (1 − c)/2 > k. In the limit as δ → 1, the state of the
industry will—in the period following the deviation—move to (k′, k̂(k′)) = ((1− c)/2, (1− c)/4), and stay there forever.
Hence, as δ → 1, firm 1’s average payoff from deviating becomes

Sk′
(
1 − c − k′ − k̂(k′)

)
= S

(1 − c)2

8
,

which is larger than Sk (1 − c − 2k) if and only if k < (1 − c)/4. Hence, for δ sufficiently large, the collusive strategy
profile �coll(k), k < (1 − c)/4, does not form an MPE. Q.E.D.

Proof of Proposition 4. The proof proceeds in several steps.

(i) Suppose the current state, umax
−1 , is above u, i.e. umax

−1 ≥ u. Then, at most one firm will invest along the equilibrium
path in any given period. To prove this claim, I consider period t, and assume that u j

t ≤ ui
t = umax

t along the equilibrium
path. It is easy to see that it is optimal for firm j to set u j

t = umax
t−1: the choice of u j

t does not affect j’s payoff in the
continuation game as long as u j

t ≤ ui
t , and firm j’s best reply from below to umax

t is given by the solution to

max
u j

t ∈
[
umax

t−1 ,ui
t

] S

(
u j

t

u j
t + ui

t

)2

−
(

u j
t

)β

+
(
umax

t−1
)β

,

which is equal to umax
t−1 since umax

t−1 ≥ u.

(ii) I now claim that no firm will invest along the equilibrium path starting from any state umax
−1 above u. To see this,

suppose otherwise. From (i), I know that at most one firm invests in any given period. Assume firm i invests in period
t (and hence firm j does not), and let V i (·) denote firm i’s value function. Then, firm i’s discounted sum of profits (or
value) in period t , V i (umax

t−1), must satisfy

V i (
umax

t−1
)

= max
u≥umax

t−1
S

(
u

u + umax
t−1

)2

− uβ +
(
umax

t−1
)β + δV i (u)

≥ S/4 + δV i (
umax

t−1
)
,

where the inequality follows from the fact that i may decide not to invest, in which case umax
t = umax

t−1. This yields

V i (
umax

t−1
)
≥ S

4(1 − δ)
.
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Since each firm’s gross profit is decreasing in its rival’s quality, I obtain an upper bound on firm i’s profit by assuming that
firm j will never invest again in the future. Firm i’s stationary best reply to any quality level above u is never to invest.
Hence, for any u ≥ u,

V i (u) ≤ S
4(1 − δ)

.

Combining the equations gives V i (umax
t−1) = S/[4(1 − δ)], i = 1, 2, and umax

t = umax
t−1.

(iii) Suppose now that umax
t−1 ≤ u. I claim that umax

t ≤ u. To see this, suppose umax
t ≥ u so that the continuation

payoff for both firms is given by V i (umax
t ) = S/[4(1− δ)], i = 1, 2. Assume u ≤ u1

t = umax
t . Then the two value functions

must satisfy

V 1 (
umax

t−1
)

= max
u1≥u

S
(

u1
t

u2
t + u1

t

)2

−
(

u1
t

)β

+
(
umax

t−1
)β + δ

S
4(1 − δ)

,

and

V 2 (
umax

t−1
)

= max
u2≥umax

t−1

S

(
ui

t

u j
t + ui

t

)2

−
(

u j
t

)β

+
(
umax

t−1
)β + δ

S
4(1 − δ)

.

The only tuple (u1
t , u2

t ) that satisfies both equations is given by (u, u). Hence, umax
t−1 ≤ u implies umax

t ∈ [umax
t−1, u].

(iv) Any equilibrium is symmetric. That is, along the equilibrium path, u1
t = u2

t = umax
t for all t . Above, I have

shown that this holds for the unique equilibrium starting from state umax
−1 ≥ u. I now extend this result to the case where

umax
−1 ≤ u. From my earlier analysis, I know that umax

t ∈ [umax
t−1, u] for all t . I claim that firm i has a profitable deviation

if ui
t < u j

t = umax
t . Indeed, firm i’s quality choice does not affect its continuation payoff provided that it does not invest

more than its rival. But firm i’s best reply from below is to set its quality equal to the rival’s quality since û(u) ≥ u for
any u ≤ u.

(v) Suppose that umax
t−1 ≤ u and û

(
umax

t−1
)
≥ u. I then claim that u1

s = u2
s = u for all s ≥ t . To see this, recall again that

I obtain an upper bound on firm i’s profit by assuming that firm j will never invest again in the future. Now, if u j
s < u,

then firm i may deviate to û(u j
s ) ≥ u. In the equilibrium of the induced subgame, both firms will never invest again. By

definition of û(·), the deviation must therefore be profitable.

(vi) Suppose that umax
t−1 ≤ u and û(umax

t−1) ≤ u. Note that the latter inequality holds if and only if u ≥ (2 +
√

5)umax
t−1. I

now prove by contradiction that u1
s = u2

s = u for all s ≥ t . Assume to the contrary that umax
t < u and consider a period-t

deviation by firm 1 to quality level u. The deviation induces the following sequence of quality levels: (u1
t , u2

t ) = (u, u),
and (u1

s , u2
s ) = (u, u) for all s ≥ t + 1. The deviation is profitable if and only if

S
(

u/umax
t

1 + u/umax
t

)2
− uβ +

(
umax

t
)β +

δ

1 − δ

S
4

>
1

1 − δ

S
4

⇔ S
(

u/umax
t

1 + u/umax
t

)2
>

S
4

(
β + 1

β

)
−

(
umax

t
)β

⇐ β >

[
4

(
u/umax

t
1 + u/umax

t

)2
− 1

]−1

.

For a given β, the left-hand side of the last inequality is independent of umax
t and u, while the right-hand side is strictly

decreasing in the ratio u/umax
t , for u ≥ umax

t . Since u ≥ (2 +
√

5)umax
t , the proof is complete if one can show that

β >


4

(
2 +

√
5

1 + 2 +
√

5

)2

− 1



−1

= 0.61803.

But this inequality holds by assumption. Q.E.D.

Proof of Proposition 6. As mentioned in the main text, for simplicity restrict attention to equilibria in which the number
of active firms, nt , is nondecreasing over time, nt ≥ nt−1 for all t ≥ 0, and in which, in each period t , all active firms
offer the same quality, ut . I will show by contradiction that there exists a finite bound n on the number of active firms,
nt ≤ n for all t ≥ 0. This bound n is independent of market size. Since nt is trivially bounded for any given market size
S, I will consider the limit as S → ∞.

Consider an arbitrary date t̂ at which entry occurs (i.e., such that n̂t > n̂t−1); since the market opens in period 0,
such a date must exist. A new entrant’s discounted sum of profits along the equilibrium path is bounded from above by

S
(1 − δ)n2

t̂
− uβ

t̂ − ε

© RAND 2007.
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since the entrant’s discounted sum of profits are maximized if no future entry and no future investment occurs. In
equilibrium, the entrant’s discounted sum of profits must be nonnegative, which requires that

1
(1 − δ)n2

t̂
≥

(
uβ

t̂
S

)
+

ε

S
. (A8)

Suppose now that, in period t̂ , either a new entrant or an incumbent firm deviates by investing up to quality level

u′ =
[
Sût

]1/(β+1)
,

where u′ > ût for S sufficiently large (since, otherwise, equation (A8) would not hold). Clearly, in any period following
the deviation, the deviant firm’s profit is at least zero. Hence, a necessary condition for the deviation to be unprofitable is

S


1 −

(
ût/u′)

1
n̂t−1

(
ût/u′) + 1




2

−
[(

u′)β − uβ

t̂

]
≤ S

(1 − δ)n2
t̂
,

where the first term on the left-hand side is the deviant firm’s profit in the period of deviation, the second term the
additional investment cost associated with the higher quality, while the term on the right-hand side is an upper bound on
the discounted sum of gross profits along the equilibrium path. The inequality can be rewritten as

1
(1 − δ)n2

t̂
≥


1 −

[
uβ

t̂ /S
]1/(β+1)

1
n̂t−1

[
uβ

t̂ /S
]1/(β+1)

+ 1




2

−
([

uβ

t̂ /S
]1/(β+1)

−
[
uβ

t̂ /S
])

. (A9)

Hence, in equilibrium, equations (A8) and (A9) must hold for any t̂ (at which entry occurs) and any S sufficiently large.
For notational convenience, I will henceforth drop the time subscript. As mentioned above, I will prove the proposition by
contradiction. Suppose that the number of active firms n → ∞ as S → ∞. Hence, the left-hand side of both equations
(A8) and (A9) will tend to zero as market size becomes large. For equation (A8) to hold, I therefore must have uβ/S → 0
as S → ∞. But if uβ/S → 0, then the r.h.s. of equation (A9) will converge to one as market size becomes large. That is,
equation (A9) cannot hold for S large. A contradiction.

References
Besanko, D. and Doraszelski, U. “Capacity Dynamics and Endogenous Asymmetries in Firm Size.” RAND Journal

of Economics, Vol. 35 (2004), pp. 23–49.
Budd, C., Harris, C., and Vickers, J. “A Model of the Evolution of Duopoly: Does the Asymmetry Between Firms

Tend to Increase or Decrease?” Review of Economic Studies, Vol. 60 (1993), pp. 543–573.
Cabral, L. and Riordan, M. “The Learning Curve, Market Dominance, and Predatory Pricing.” Econometrica, Vol. 62

(1994), pp. 1115–1140.
Cohen, W.M. and Levinthal, D.A. “Innovation and Learning: The Two Faces of R&D.” Economic Journal, Vol. 99

(1989), pp. 569–596.
d’Aspremont, C. and Jacquemin, A. “Cooperative and Noncooperative R&D in Duopoly with Spillovers.” American

Economic Review, Vol. 78 (1988), pp. 1133–1137.
De Bondt, R. “Spillovers and Innovative Activities.” International Journal of Industrial Organization, Vol. 15 (1997),

pp. 1–28.
De Roos, N. “A Model of Collusion Timing.” International Journal of Industrial Organization, Vol. 22 (2004), pp.

351-387.
Doraszelski, U. and Markovich, S. “Advertising Dynamics and Competitive Advantage.” Working Paper, Department

of Economics, Harvard University, 2005.
Dutta, P.K. “A Folk Theorem for Stochastic Games.” Journal of Economic Theory, Vol. 66 (1995), pp. 1–32.
Ericson, R. and Pakes, A. “Markov-Perfect Industry Dynamics: A Framework for Empirical Work.” Review of Economic

Studies, Vol. 62 (1995), pp. 53–82.
Evans, D.S. and Schmalensee, R. “Some Economic Aspects of Antitrust Analysis in Dynamically Competitive Indus-

tries.” NBER Working Paper no. 8268, National Bureau of Economic Research, 2001.
Fershtman, C. and Pakes, A. “A Dynamic Oligopoly with Collusion and Price Wars.” RAND Journal of Economics,

Vol. 31 (2000), pp. 207–236.
Fudenberg, D. and Tirole, J. “Capital as a Commitment: Strategic Investment to Deter Mobility.” Journal of Economic

Theory, Vol. 31 (1983), pp. 227–250.
———. Game Theory. Cambridge, Mass.: MIT Press, 1991.
© RAND 2007.



mss # Nocke; art. # ??; RAND Journal of Economics vol. 38(1)

NOCKE / 249

Gowrisankaran, G. “A Dynamic Model of Endogenous Horizontal Mergers.” RAND Journal of Economics, Vol. 30
(1999), pp. 56–83.

Hole, A. Dynamic Non-Price Strategy and Competition: Models of R&D, Advertising and Location. Ph.D. dissertation,
Department of Economics, London School of Economics, 1997.

Kamien, M.I., Muller, E., and Zang, I. “Research Joint Ventures and R&D Cartels.” American Economic Review, Vol.
82 (1992), pp. 1293–1306.

Kesteloot, K. and Veugelers, R. “Stable R&D Cooperation with Spillovers.” Journal of Economics and Mangement
Strategy, Vol. 4 (1995), pp. 651–672.

Kwoka, J.E.J. and White, L.J., eds. The Antitrust Revolution. 4th ed. New York: Oxford University Press, 2004.
Maskin, E. and Tirole, J. “A Theory of Dynamic Oligopoly I: Overview and Quantity Competition with Large Fixed

Costs.” Econometrica, Vol. 56 (1988), pp. 549–570.
Morse, M.H. “Vertical Mergers: Recent Learning.” Business Lawyer, Vol. 53 (1998), pp. 1217–1248.
Nerlove, M. and Arrow, K.J. “Optimal Advertising Policy Under Dynamic Conditions.” Economica, Vol. 29 (1962),

pp. 129–142.
Nocke, V. “Underinvestment and Market Structure.” STICERD Discussion Paper no. EI/22, London School of Economics,

1998.
Reinganum, J. “The Timing of Innovation: Research, Development, and Diffusion.” In R. Schmalensee and R.D. Willig,

eds., The Handbook of Industrial Organization, Vol. 1. New York: North-Holland, 1989.
Reynolds, S.S. “Capacity Investment, Preemption and Commitment in an Infinite Horizon Model.” International Eco-

nomic Review, Vol. 28 (1987), pp. 69–88.
———. “Dynamic Oligopoly with Capacity Adjustment Costs.” Journal of Economic Dynamics and Control, Vol. 15

(1991), pp. 491–514.
Segal, I. and Whinston, M.D. “Antitrust in Innovative Industries.” Working Paper, Department of Economics, Stanford

University, and Department of Economics, Northwestern University, 2003.
Shaked, A. and Sutton, J. “Natural Oligopolies.” Econometrica, Vol. 51 (1983), pp. 1469–1484.
——— and———. “Product Differentiation and Industrial Structure.” Journal of Industrial Economics, Vol. 36 (1987),

pp. 131–146.
Shapiro, C. “Theories of Oligopoly Behavior.” In R. Schmalensee and R.D. Willig, eds., The Handbook of Industrial

Organization, Vol. 1. New York: North-Holland, 1989.
Sutton, J. Sunk Costs and Market Structure. Cambridge, Mass.: MIT Press, 1991.
———. Technology and Market Structure. Cambridge, Mass.: MIT Press, 1998.
———. “Market Structure: Theory and Evidence.” In M. Armstrong and R. Porter, eds., The Handbook of Industrial

Organization, Vol. 3, New York: North Holland, forthcoming.

© RAND 2007.




