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Abstract

Applied researchers often work with demand systems that do not depend on income,

with the implicit assumption that preferences are quasi-linear and income sufficiently

large. The classic approach to the integrability of demand does not readily apply in

this case. Adopting a much simpler approach that is based on integrating the vector

field defined by the demand system and on duality, we provide necessary and sufficient

conditions for the quasi-linear integrability of such (continuous) demand systems. We

also derive results on the associated utility function and its domain, and provide an

application to the analysis of demand systems in the presence of measurement errors.

1 Introduction

In this paper, we provide necessary and sufficient conditions for the quasi-linear integrability

of a demand system. That is, we analyze the classic integrability problem for the case when

observed demand does not vary with income and consumers have quasi-linear preferences.

In industrial organization and other applied fields of microeconomics, researchers typically

focus on partial equilibrium settings and therefore often work with demand systems that

depend on prices but not on income. The implicit assumption they make is that preferences

are quasi-linear and consumer income sufficiently high, so that not all income is spent on the

goods offered in the market under consideration. It remains unspecified what demand would

look like if income were so low that no outside good would be consumed.

The classic treatment of the integrability problem is due to Hurwicz and Uzawa (1971).

Their approach consists of two key steps. First, they integrate the demand system to ob-

tain an income compensation function, using tools from the literature on differential forms.

Second, inverting the demand system and using the income compensation function, they con-

struct a utility function, defined over the range of the demand system. The second step has
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been subsequently improved by Jackson (1986), who uses duality theory to obtain an upper

semi-continuous utility function defined over the entire non-negative orthant. However, this

approach does not apply (and does not extend easily) to the “quasi-linear case” in which

demand is not a function of income. In particular, the existing approach relies on (i) the

differentiability of demand at all prices and income levels, (ii) the boundary condition that,

for any price vector, demand is zero whenever income is zero, and (iii) the non-negativity of

demand.

How can the existing approach and results be extended to the quasi-linear case in which

the specified demand is not a function of income?1 One possible solution would involve

allowing for negative consumption of the outside good whenever income is sufficiently low.

However, this would obviously violate conditions (ii) and (iii). An alternative solution would

involve extending the demand system in some way to account for cases in which income is

sufficiently low. However, this would necessarily introduce a non-differentiability, violating

condition (i).2

In this paper, we develop a much simpler approach for continuous demand systems that

do not depend on income. First, we show the existence of a (candidate) indirect subutility

function by integrating the vector field defined by the demand system. Second, we construct

a direct quasi-linear utility function, using duality theory. We show that quasi-linear integra-

bility amounts to the demand system being a conservative vector field that satisfies the law

of demand. If demand is continuously differentiable, then this condition is equivalent to the

symmetry and negative semi-definiteness of the substitution matrix of the demand system.3

Moreover, under these conditions, the associated indirect utility function is unique up to

an additive constant, and continuously differentiable, implying that any induced change in

money-metric consumer welfare is uniquely pinned down. Under the same conditions, the

demand system can be derived from a monotone, concave and upper semi-continuous subu-

tility function defined over some set X that contains the comprehensive convex hull of the

range of the demand system. Furthermore, the resulting subutility function is continuous in

the interior of X.

We obtain additional results in Section 4. There, we provide results on the shape of X, on

the maximality of X, derive conditions under which the subutility function is continuously

differentiable, and provide an application of our results to the analysis of quasi-linear demand

systems in the presence of measurement errors, in the spirit of Lewbel (2001). Finally, in

Section 5, we relate our results to the literature on (quasi-linear) rationalizability with finite

1See Amir, Erickson, and Jin (2017) for a treatment of quasi-linear integrability when demand is linear.
2Hosoya (2016, Section 3) proves an integrability theorem for demand systems that are defined over an

open cone of the positive orthant. While it is possible to apply his results to study quasi-linear integrability,
his construction relies on the demand system being continuously differentiable and surjective, an assumption
which we do not need to make.

3The fact that the maximization of a quasi-linear utility function with a negative definite Hessian matrix
delivers a demand system with a symmetric and negative semi-definite substitution matrix is well-known
(see, e.g., Vives, 2000, Section 3.1). In this paper, we fully characterize the set of continuous demand systems
that are derivable from quasi-linear utility maximization.
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or infinite data (Afriat, 1967; Brown and Calsamiglia, 2007; Sákovics, 2013; Dziewulski and

Quah, 2014; Nishimura, Ok, and Quah, 2016), and discuss what can be done when demand

is not continuous.

2 Definitions and Statement of the Theorem

Notation. Suppose x, y ∈ Rn (n ≥ 1). We write x ≥ y if xi ≥ yi for every i in {1, . . . , n},
x > y if x ≥ y and x 6= y, and x >> y if xi > yi for every i in {1, . . . , n}. R+ (resp. R++)

is the set of non-negative (resp. strictly positive) real numbers. N (resp. N∗) is the set of

non-negative (resp. strictly positive) integers. Suppose X ⊆ Rn, Y ⊆ Rm (m,n ≥ 1), and

f : X → Y . We say that f is non-decreasing if f(x) ≥ f(x′) whenever x ≥ x′. In addition,

we denote the range of f by R(f), the closure of X by X, the interior of X by X̊, and

the boundary of X by ∂X. ∇ denotes the gradient operator, and superscript T denotes the

transpose operator. For every 1 ≤ i ≤ n, we denote by ei the i-th vector in the standard

basis of Rn, and we let 1n =
∑n

j=1 ej. ‖.‖ denotes the euclidian norm.

We recall the following definitions:

Definition 1. Let X be a subset of Rn. We say that X is comprehensive upward if for every

x ∈ X, for every y ∈ Rn, if y ≥ x, then y ∈ X.

Definition 2. Let X be a subset of Rn.

The comprehensive convex hull of X, denoted CCH(X) is the smallest (by set inclusion) set

Y that (a) contains X, (b) is convex, and (c) is comprehensive upward.

The closed comprehensive convex hull of X, denoted CCCH(X) is the smallest closed set Y

that satisfies properties (a), (b), and (c).

The existence of CCH(X) and CCCH(X) can be easily established by taking inter-

sections. In addition, CCH(X) ⊆ CCCH(X). We will later establish that CCH(X) =

CCCH(X) (Lemma 7).

Let D(.) be a function from Rn
++ to Rn

+. For every 1 ≤ i ≤ n, we denote by Di(p) the i-th

component of vector D(p). Di(p) is the demand for product i at price vector p. The function

D(.) is called a demand system.

We now introduce an outside good (good 0, priced at p0), and use D to construct a

complete demand system D̂ as follows: for every p0 ∈ R++, p ∈ Rn
++ and y ∈ R+,4

D̂i(p0, p, y) = Di

(
p

p0

)
, ∀i ∈ {1, . . . , n},

4In some treatments of quasi-linear preferences, q0 is viewed as “money left over,” in which case p0 should
be simply set equal to unity. We view q0 as an outside good, which represents the rest of the economy,
and which can take any strictly positive price p0. That price can still be normalized to one without loss of
generality.
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D̂0(p0, p, y) =
1

p0

(
y −

n∑
i=1

piDi

(
p

p0

))
.

Definition 3. Demand system D(·) is quasi-linearly integrable if there exist a set X ⊆ Rn
+

and a function u : X → R such that for every (p0, p, y) ∈ R++ × Rn
++ × R+ such that

D̂0(p0, p, y) ≥ 0, D̂(p0, p, y) is the unique solution of

max
(q0,q)

(q0 + u(q)) s.t. p0q0 + p · q ≤ y, q0 ≥ 0 and q ∈ X.

When this is the case, we say that D can be derived from (X, u). u is called a (direct) utility

function for the demand system D.

As mentioned in the introduction, we cannot use Hurwicz and Uzawa (1971) and Jackson

(1986)’s classical results to establish integrability of demand system D̂, because D̂0 is strictly

negative at certain price and income vectors, and condition D̂i(·, ·, 0) = 0 is not satisfied.

Next, we define the concept of indirect subutility function:

Definition 4. We say that D can be indirectly derived from v : Rn
++ −→ R if there exists

(X, u) such that D can be derived from (X, u), and v(p) = u(D(p)) − p · D(p) for every

p >> 0. v is called an indirect subutility function for the demand system D.

The subutility function we construct for the demand system D is defined over a set X,

which may be a proper subset of the non-negative orthant. We will show that that set X is

maximal in the following sense:

Definition 5. We say that (X, u) is maximal for the demand system D(·) if

• D can be derived from (X, u), and

• For every (X̃, ũ) such that D can be derived from (X̃, ũ), the set X̃\X has Lebesgue

measure zero.

We can now state our quasi-linear integrability theorem:

Theorem 1. Suppose that the demand system D is continuous. The following are equivalent:

(i) D is quasi-linearly integrable.

(ii) For every k ≥ 2 and (pi)1≤i≤k ∈ (Rn
++)k,

(p2−p1) ·D(p1)+(p3−p2) ·D(p2)+ . . .+(pk−pk−1) ·D(pk−1)+(p1−pk) ·D(pk) ≥ 0. (1)

(iii) D is conservative (i.e.,
∫
C
D(p) · dp = 0 for every closed and piecewise-continuously

differentiable path C) and satisfies the law of demand (i.e, (p′− p) · (D(p′)−D(p)) ≤ 0

for every p, p′ >> 0).5

5A closed and piecewise-continuously differentiable path is a continuous function p : [0, 1] −→ Rn
++ such

that p is piecewise C1 and p(0) = p(1). The line integral
∫
C
D(p) · dp is defined as

∫ 1

0
p′(t) ·D(p(t))dt.
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If D is C1, then the above assertions are equivalent to

(iv) For every p >> 0, the substitution matrix J(p) =
(
∂Di

∂pj
(p)
)
1≤i,j≤n

is symmetric and

negative semi-definite.

Moreover, regardless of the differentiability properties of D, if one of the above conditions

holds, then there exists (X, u) such that

• (X, u) is maximal for D,

• X is convex and comprehensive upward, and CCH (R(D)) ⊆ X ⊆ CCCH (R(D)),

• u is non-decreasing, concave and upper semi-continuous. In addition, u is continuous

on X̊
⋂

Rn
++.

Finally, if D can be indirectly derived from v, then ∇v = −D, and the function v is unique

up to an additive constant.

3 Proof of the Theorem

In this section, we assume that the demand system D is continuous, and prove the theorem

in several steps. In Section 3.1, we prove the results related to the indirect subutility function

v. Building on these results, we prove that (i) implies (iii) in Section 3.2, and, assuming (iii),

we construct a candidate for a direct subutility function u(·) defined over some domain X

in Section 3.3. There, we also show that X is convex, comprehensive upward and contains

CCH (R(D)), and that u is concave and non-decreasing. Section 3.4 shows that D can

indeed be derived from (X, u). Section 3.5 shows that X ⊆ CCCH (R(D)), and that (X, u)

is maximal for D. The continuity properties of u are established in Section 3.6. Section 3.7

shows that (ii) is equivalent to (iii). The fact that (iii) is equivalent to (iv) when D is C1
follows from Lemmas 13 and 14, stated and proven in the appendix.

3.1 On the indirect utility function

Lemma 1. If D can be indirectly derived from v, then ∇v = −D.

Moreover, if condition (iii) in Theorem 1 holds, then there exists a function v such that

∇v = −D.

In both cases, the function v is unique up to an additive constant.

Proof. Suppose that D can be indirectly derived from v. There exists (X, u) such that D can

be derived from (X, u) and v(p) = u(D(p))−p ·D(p) for every p. Since D can be derived from

(X, u), for every p >> 0, D(p) solves maxx∈X u(x) − p · x. Moreover, for every p, p′ >> 0,

v(p) ≥ u (D (p′))− p ·D (p′).
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All we need to do is show that v is differentiable and ∇v = −D. Let p >> 0. For every

ε ∈ Rn\{0} such that p+ ε >> 0, let

∆(ε) =
v(p+ ε)− v(p) + ε ·D(p)

‖ε‖
.

Then,

∆(ε) ≥ u (D(p))− (p+ ε) ·D(p)− (u (D(p))− p ·D(p)) + ε ·D(p)

‖ε‖
= 0.

Moreover,

∆(ε) ≤ u (D(p+ ε))− (p+ ε) ·D(p+ ε)− (u (D(p+ ε))− p ·D(p+ ε)) + ε ·D(p)

‖ε‖
,

=
ε

‖ε‖︸︷︷︸
bounded

· (D(p)−D(p+ ε))︸ ︷︷ ︸
−→
ε→0

0, since D is continuous

−→
ε→0

0.

By the sandwich theorem, lim0 ∆ = 0, v is differentiable, and ∇v = −D.

Next, suppose that condition (iii) holds. Then, by Lemma 13 in the appendix, there exists

a function v such that ∇v = −D. The fact that the function v is unique up to an additive

constant also follows from Lemma 13.

3.2 Proof that (i) implies (iii)

Lemma 2. If D is quasi-linearly integrable, then D is conservative and satisfies the law of

demand.

Proof. Suppose that D can be derived from (X, u), and let v(p) = u(D(p)) − p · D(p) for

every p. Then, by Lemma 1, ∇v = −D. Therefore, D has a potential, and, by Lemma 13 in

the appendix, D is conservative.

Next, we prove that v is convex. Let p, p′ >> 0, λ ∈ [0, 1], and p′′ = λp+ (1−λ)p′. Then,

v (p′′) = λ (u(D(p′′))− p ·D(p′′)) + (1− λ) (u(D(p′′))− p′ ·D(p′′)) ,

≤ λ (u(D(p))− p ·D(p)) + (1− λ) (u(D(p′))− p′ ·D(p′)) ,

= λv(p) + (1− λ)v(p′).

It follows that v is convex. Therefore, by Lemma 14 in the appendix, D satisfies the law of

demand.
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3.3 Construction of (X, u) and basic properties

In the following, we assume that (iii) holds. By Lemma 1, there exists a function v such that

∇v = −D. We guess that

V (p0, p, y) =
y

p0
+ v

(
p

p0

)
is an indirect utility function for the demand system D̂. If so, then the corresponding

expenditure function is given by

E(p0, p, ū) = p0

(
ū− v

(
p

p0

))
,

where ū is a target utility level. We use Jackson (1986) and Krishna and Sonnenschein

(1990)’s duality formulas to construct a direct utility function:

U(q0, q) = sup

{
ū ∈ R : p0q0 + p̃ · q ≥ p0

(
ū− v

(
p̃

p0

))
, ∀p0 > 0, ∀p̃ >> 0

}
,

= sup {ū ∈ R : q0 + p · q ≥ ū− v (p) , ∀p >> 0} ,
= sup {ū ∈ R : ū− q0 ≤ p · q + v (p) , ∀p >> 0} ,
= q0 + sup {v̄ ∈ R : v̄ ≤ p · q + v (p) , ∀p >> 0} ,
= q0 + inf

p>>0
{p · q + v(p)} .

This gives us a candidate for u(.):

u(q) = inf
p>>0
{p · q + v(p)} ,

and a candidate for the set X:

X =
{
q ∈ Rn

+ : u(q) is finite
}
.

Let φq(p) = p · q + v(p) for every q ≥ 0 and p >> 0. Then, u(q) = infp>>0 φq(p). We first

establish some basic properties of the pair (X, u):

Lemma 3. The set X has the following properties:

(a) X contains R(D).

(b) X is convex.

(c) X is comprehensive upward.

Therefore, CCH (R(D)) ⊆ X.

Lemma 4. The function u has the following properties:
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(a) For every p >> 0, u (D(p)) = p ·D(p) + v(p).

(b) u is concave.

(c) u is non-decreasing.

Lemmas 3 and 4 are proven jointly:

Proof. Since φq (1n) ∈ R, u(q) < ∞. Therefore, u(q) is finite if and only if u(q) > −∞.

Moreover, since D satisfies the law of demand, it follows from Lemma 14 in the appendix

that v is convex. Therefore, φq(·) is convex for every q ≥ 0.

Let q ∈ R(D). There exists p̂ >> 0 such that q = D(p̂) = −∇v(p̂). Therefore, ∇φq(p̂) =

0 and, by convexity, p̂ is a global minimizer of the function φq(.). It follows that u(q) = φq(p̂)

is finite, and that q ∈ X. This establishes part (a) in Lemmas 3 and 4.

Let (q, q′) ∈ X2 and λ ∈ [0, 1]. Let q′′ = λq + (1− λ)q′. Then, for every p >> 0,

φq′′(p) = p · (λq + (1− λ)q′) + v(p),

= λ (p · q + v(p)) + (1− λ) (p · q′ + v(p)) ,

= λφq(p) + (1− λ)φq′(p),

≥ λu(q) + (1− λ)u(q′) > −∞.

It follows that u(q′′) is finite, q′′ ∈ X, and u(q′′) ≥ λu(q) + (1−λ)u(q′). This establishes part

(b) in Lemmas 3 and 4.

Next assume that q ∈ X and q′ ≥ q. Then, for every p >> 0,

φq′(p) = p · q′ + v(p) ≥ φq(p) ≥ u(q) > −∞.

Therefore, u(q′) is finite, q′ ∈ X and u(q′) ≥ u(q). This establishes part (c) in Lemmas 3

and 4.

Finally, since X is a convex and comprehensive upward set that contains R(D), it follows

that CCH (R(D)) ⊆ X.

3.4 Proof that D can be derived from (X, u)

In this section, we continue to assume that condition (iii) holds, and we show that D can

indeed be derived from the pair (X, u) constructed in Section 3.3.

Lemma 5. For every (p0, p, y) such that D̂0(p0, p, y) ≥ 0, for every (q0, q) ∈ R+ × X such

that q 6= D
(
p
p0

)
and p0q0 + p · q ≤ y,

q0 + u (q) < D̂0 (p0, p, y) + u

(
D

(
p

p0

))
.
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Proof. Let U(q0, q) = q0+u(q) for every (q0, q) ∈ R+×X, and let (p0, p, y) ∈ R++×Rn
++×R+.

Since U is strictly increasing in q0, it is enough to prove that

U (q0, q) < U

(
D̂0 (p0, p, y) , D

(
p

p0

))
,

for every (q0, q) ∈ R×
(
X\
{
D
(
p
p0

)})
such that p0q0 + p · q = y.

Let q ∈ X and q0 = 1
p0

(y − p · q). Then,

U(q0, q) =
1

p0
(y − p · q) + inf

p̃>>0
{p̃ · q + v(p̃)} ,

≤ 1

p0
(y − p · q) +

p

p0
· q + v

(
p

p0

)
, by definition of the inf,

=
y

p0
+ v

(
p

p0

)
,

=
1

p0

(
y − p ·D

(
p

p0

))
+

p

p0
·D
(
p

p0

)
+ v

(
p

p0

)
,

= D̂0 (p0, p, y) + u

(
D

(
p

p0

))
, by Lemma 4-(a),

= U

(
D̂0 (p0, p, y) , D

(
p

p0

))
.

Next, assume that

U(q0, q) = U

(
D̂0 (p0, p, y) , D

(
p

p0

))
.

Then,
y

p0
− p

p0
· q + inf

p̃>>0
{p̃ · q + v(p̃)} =

y

p0
+ v

(
p

p0

)
,

i.e., inf p̃>>0 φq(p̃) = φq

(
p
p0

)
. Therefore, p

p0
minimizes φq(.), and ∇ φq(p̃)|p̃= p

p0

= 0. It follows

that

q = −∇ v(p̃)|p̃= p
p0

= D

(
p

p0

)
.

This concludes the proof.

3.5 Maximality of (X, u)

In this section, we continue to assume that condition (iii) holds, and prove that the pair

(X, u) constructed in Section 3.3 is indeed maximal.

Lemma 6. Suppose that D can be derived from (X̃, ũ). Then, X̃ ⊆ CCCH (R(D)).

Proof. If CCCH (R(D)) = Rn
+, then there is nothing to prove, so suppose that CCCH (R(D)) (

Rn
+, let x ∈ Rn

+\CCCH (R(D)), and assume for a contradiction that x ∈ X̃. {x} and

9



CCCH (R(D)) are both convex, {x}
⋂
CCCH (R(D)) = ∅, {x} is compact, and CCCH (R(D))

is closed. By the separating hyperplane theorem, there exist p̃ ∈ Rn and (c1, c2) ∈ R2 such

that for every q ∈ CCCH (R(D)),

p̃ · x < c1 < c2 < p̃ · q.

Assume for a contradiction that p̃i < 0 for some i ∈ {1, . . . , n}. Let q ∈ CCCH (R(D)),

and, for every µ ≥ 0, let r(µ) = q + µei. Since CCCH (R(D)) is comprehensive upward,

r(µ) ∈ CCCH (R(D)) for every µ ≥ 0. Since p̃ · r(µ) = p̃ · q + µp̃i −→
µ→∞

−∞, there exists

µ ≥ 0 such that p̃ · r(µ) ≤ p̃ · x, which is a contradiction. Therefore, p̃ ≥ 0.

Next, choose ε > 0 such that p̃ · x + ε
∑n

i=1 xi < c1, and let p = p̃ + ε1n. Then, p >> 0,

and for every q ∈ CCCH (R(D)),

p · x < c1 < c2 < p̃ · q ≤ p̃ · q + ε
n∑
i=1

qi = p · q.

It follows that, for every λ > 0 and q ∈ CCCH (R(D)),

(λp) · x < λc1 < λc2 < (λp) · q.

Therefore, for every λ > 0 and q ∈ CCCH (R(D)), λp · x < λ(c1 − c2) + λp · q. In

particular, for every λ > 0,

λp · x < λ(c1 − c2) + λp ·D(λp).

In addition, since D can be derived from (X̃, ũ), we have that

ũ(x)− λp · x ≤ ũ (D(λp))− λp ·D(λp), ∀λ > 0.

It follows that, for every λ,

ũ(x) ≤ ũ (D(λp)) + λp · x− λp ·D(λp),

< ũ (D(λp)) + λ (c1 − c2)︸ ︷︷ ︸
<0

.

All we need to do now is show that ũ (D(λp)) is non-increasing in λ. Once this is established,

it follows immediately that the right-hand side of the above inequality goes to −∞ as λ goes

to +∞. Therefore, u(x) = −∞, and x /∈ X̃, a contradiction.

Let 0 < λ < λ′. Since D can be derived from (X̃, ũ),

ũ (D(λp))− λp ·D(λp) ≥ ũ (D(λ′p))− λp ·D(λ′p).
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Therefore,

ũ (D(λp))− ũ (D(λ′p)) ≥ λp · (D(λp)−D(λ′p)) ,

=
λ

λ′ − λ
(λ′p− λp) · (D(λp)−D(λ′p)) ,

≥ 0,

since D satisfies the law of demand. This concludes the proof.

It follows immediately from Lemma 6 that X ⊆ CCCH (R(D)). The following technical

lemma will allow us to prove that (X, u) is maximal for D:

Lemma 7. If Y is a subset of Rn, then CCCH(Y ) = CCH(Y ).

Proof. We first prove that CCH(Y ) ⊆ CCCH(Y ). Let y ∈ CCH(Y ). There exists a

sequence (yk)k≥0 in CCH(Y ) such that yk −→
k→∞

y. Since CCH(Y ) ⊆ CCCH(Y ), it follows

that yk ∈ CCCH(Y ) for every k ≥ 0. Since CCCH(Y ) is closed, we can conclude that

y = limk→∞ y
k ∈ CCCH(Y ).

Next, we show that CCCH(Y ) ⊆ CCH(Y ). Towards this goal, we show that CCH(Y )

is convex and comprehensive upward.

Let us start with convexity. Let y, y′ ∈ CCH(Y ) and λ ∈ [0, 1]. Let y′′ = λy + (1− λ)y′.

There exist two sequences (yk)k≥0 and (y′k)k≥0 in CCH(Y ) such that yk −→
k→∞

y and y′k −→
k→∞

y′.

For every k ≥ 0, let y′′k = λyk + (1− λ)y′k. Then, since CCH(Y ) is convex, y′′k ∈ CCH(Y )

for every k. Therefore, y′′ = limk→∞ y
′′k ∈ CCH(Y ), and CCH(Y ) is convex.

Next, we turn our attention to comprehensiveness. Let y ∈ CCH(Y ) and y′ ≥ y. There

exists a sequence (yk)k≥0 in CCH(Y ) such that yk −→
k→∞

y. For every k ≥ 0, let y′k = yk+y′−y.

Then, for every k ≥ 0, y′k ≥ yk, and, by comprehensiveness, y′k ∈ CCH(Y ). Therefore,

y′ = limk→∞ y
′k ∈ CCH(Y ), and CCH(Y ) is comprehensive upward.

We can conclude: CCH(Y ) is closed, convex, comprehensive upward, and contains Y .

Therefore, CCCH(Y ) ⊆ CCH(Y ).

Lemma 8. (X, u) is maximal for D.

Proof. Suppose that D can be derived from (X̃, ũ). Then, by Lemmas 6 and 7, X̃ ⊆
CCH (R(D)). Moreover, by Lemma 3, CCH (R(D)) ⊆ X. Therefore,

X̃\X ⊆ CCH (R(D))\CCH (R(D)) ,

⊆ CCH (R(D))\ ˚CCH (R(D)),

= ∂CCH (R(D)) .

Since CCH (R(D)) is a convex subset of Rn, its boundary ∂CCH (R(D)) has Lebesgue

measure zero (see, e.g., Lemma 2.24 in Dudley (1999)). Therefore, X̃\X has measure zero,

and (X, u) is maximal for D.
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3.6 (Upper semi-)continuity of u

In this section, we continue to assume that condition (iii) holds, and establish the continuity

properties of the utility function u constructed in Section 3.3.

Lemma 9. u is upper semi-continuous.

Proof. Let x0 ∈ X and ε > 0. By definition of u, there exists p >> 0 such that

p · x0 + v(p) < u(x0) +
ε

2
.

In addition, by continuity of the inner product, there exists η > 0 such that p · x < p · x0 + ε
2

for every x ∈ Rn
+ such that ‖x−x0‖ < η. Therefore, for every x ∈ X such that ‖x−x0‖ < η,

u(x) ≤ p · x+ v(p) < p · x0 +
ε

2
+ v(p) < u(x0) + ε.

Therefore, u is upper semi-continuous at point x0.

Lemma 10. u is continuous on X̊
⋂
Rn

++.

Proof. Let x ∈ X̊
⋂

Rn
++. Assume for a contradiction that u is not lower semi-continuous at x.

There exist an ε0 > 0 and a sequence (xk)k≥0 in X such that xk −→
k→∞

x and u(xk) < u(x)− ε0
for every k. By definition of u, for every k ≥ 0, there exists pk ∈ Rn

++ such that

pk · xk + v(pk) < u(x)− ε0.

Since x ∈ X̊
⋂

Rn
++, there exists κ > 0 such that x − 2κ1n ∈ X. Since xk −→

k→∞
x,

xk >> x − κ1n for high enough k. Assume for a contradiction that (pk)k≥0 is not bounded

above. Assume without loss of generality that (pk1)k≥0 is not bounded above, and extract a

subsequence
(
pξ(k)

)
k≥0 such that p

ξ(k)
1 −→

k→∞
∞. Then, for high enough k,

pξ(k) · xξ(k) + v
(
pξ(k)

)
> pξ(k) · (x− κ1n) + v

(
pξ(k)

)
,

= κ1n · pξ(k) + pξ(k) · (x− 2κ1n) + v
(
pξ(k)

)
,

≥ κ

n∑
i=1

p
ξ(k)
i + u (x− 2κ1n) ,

≥ κp
ξ(k)
1 + u (x− 2κ1n) ,

which goes to infinity as k goes to infinity. It follows that pξ(k) ·xξ(k)+v
(
pξ(k)

)
−→
k→∞

∞, which

contradicts the fact that pξ(k) · xξ(k) + v
(
pξ(k)

)
< u(x)− ε0 for every k.

Therefore,
(
pk
)
k≥0 is bounded. Let M > 0 such that pki ≤ M for every 1 ≤ i ≤ n and

k ≥ 0. Since ∇v = −D ≤ 0, v is non-increasing, and vk ≡ v(pk) ≥ v (M1n) for every k.

Therefore, sequence (vk)k≥0 is bounded below. In addition, vk ≤ u(x) − ε0 for every k, so

12



(vk)k≥0 is also bounded above. We can conclude: since
(
pk
)
k≥0 and (vk)k≥0 are bounded,

there exist ψ : N∗ → N∗ strictly increasing, v ∈ R and p ∈ Rn
+ such that pψ(k) −→

k→∞
p and

vψ(k) −→
k→∞

v. Taking limits in inequality pψ(k) · xψ(k) + vψ(k) < u(x)− ε0, it follows that

p · x+ v ≤ u(x)− ε0.

Yet, for every k ≥ 0, pψ(k) · x+ v
(
pψ(k)

)
≥ u(x). Taking limits again, it follows that

u(x) ≤ p · x+ v,

which is a contradiction.

3.7 Proof that (ii) is equivalent to (iii)

Lemma 11. Let D be a continuous demand system. Then, D is conservative and satisfies

the law of demand if and only if condition (1) holds for every k ≥ 2 and (pi)1≤i≤k ∈ (Rn
++)k.

Proof. Assume that D is conservative and satisfies the law of demand. Then, by Lemma 5,

there exists (X, u) such that D can be derived from (X, u). Assume for a contradiction that

(p2 − p1) ·D(p1) + (p3 − p2) ·D(p2) + . . .+ (pk − pk−1) ·D(pk−1) + (p1 − pk) ·D(pk) < 0

for some k ≥ 2 and (pi)1≤i≤k ∈ (Rn
++)k. For every x > 0 and 1 ≤ i ≤ k, define

yi(x) = x+
i−1∑
j=1

(pj+1 − pj) ·D(pj).

For x high enough, pi ·D(pi) ≤ yi(x) for every i. Fix such an x. We drop x from the notation

in the following. By definition of (yi)1≤i≤k, we have that, for every 1 ≤ i ≤ k − 1,

pi+1 ·D(pi) + yi − pi ·D(pi) = yi+1.

Therefore, by revealed preference,

yi − pi ·D(pi) + u(D(pi)) ≤ yi+1 − pi+1 ·D(pi+1) + u(D(pi+1)).

This implies in particular that

y1 − p1 ·D(p1) + u(D(p1)) ≤ yk − pk ·D(pk) + u(D(pk)). (2)

13



Moreover,

yk − pk ·D(pk) + p1 ·D(pk) = x+
k−1∑
j=1

(pj+1 − pj) ·D(pj) + (p1 − pk) ·D(pk) < x = y1.

By revealed preference,

yk − pk ·D(pk) + u(D(pk)) < y1 − p1 ·D(p1) + u(D(p1)),

which contradicts condition (2). Therefore, condition (1) holds for every k ≥ 2 and (pi)1≤i≤k ∈
(Rn

++)k.

Conversely, assume that condition (1) holds. Applying that condition with k = 2 implies

immediately that D satisfies the law of demand. Let p(·) be a C1 path such that p(0) =

p(1). (The proof in the case where p is piecewise-C1 is analogous, but involves more tedious

notation.6) We define the following sequence of functions: For every k ≥ 1 and t ∈ [0, 1),

φk(t) = k

(
p

(
bktc+ 1

k

)
− p

(
bktc
k

))
·D
(
p

(
bktc
k

))
,

where b·c is the floor function.7 We first show that (φk)k≥1 converges pointwise to t ∈
[0, 1) 7→ p′(t) ·D(p(t)). Clearly, bktc/k −→

k→∞
t for every t. Therefore, by continuity of p and

D, D(p(bktc/k)) converges pointwise to D(p(t)) as k → ∞. Next, we turn our attention to

the term k
(
p
(
bktc+1
k

)
− p

(
bktc
k

))
. By Taylor’s theorem, for every 1 ≤ i ≤ n, there exist

functions gi and hi such that lim0 gi = lim0 hi = 0, and for every k,

pi

(
bktc+ 1

k

)
= pi(t) +

(
bktc+ 1

k
− t
)
p′i(t) +

(
bktc+ 1

k
− t
)
gi

(
bktc+ 1

k
− t
)
,

pi

(
bktc
k

)
= pi(t) +

(
bktc
k
− t
)
p′i(t) +

(
bktc
k
− t
)
hi

(
bktc
k
− t
)
.

Subtracting, and multiplying by k, we obtain:

k

(
pi

(
bktc+ 1

k

)
− pi

(
bktc
k

))
= p′i(t) + (bktc+ 1− tk) gi

(
bktc+ 1

k
− t
)

6If p is C1 on [a0, a1], [a1, a2], . . . , and [am−1, am], where a0 = 0 and am = 1, then it can be shown using
the same method that the line integral

∫
C
D(p) · dp is equal to

lim
k→∞

m−1∑
j=0

k−1∑
i=1

(
p

(
aj +

i + 1

k
(aj+1 − aj)

)
− p

(
aj +

i

k
(aj+1 − aj)

))
·D
(
p

(
aj +

i

k
(aj+1 − aj)

))
,

which is non-negative by condition (1).
7Recall that bxc is the largest integer not exceeding x.
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− (bktc − tk)hi

(
bktc
k
− t
)
.

Since bktc+ 1− tk and bktc− tk are bounded and lim0 gi = lim0 hi = 0, the above expression

converges to p′i(t) as k → ∞. Therefore, (φk)k≥1 converges pointwise to t ∈ [0, 1) 7→ p′(t) ·
D(p(t)).

Next, we show that the sequence (φk) is uniformly bounded by an integrable function.

Using the Cauchy-Schwarz inequality, we obtain that, for every k and t,

|φk(t)| ≤ k

∥∥∥∥p(bktc+ 1

k

)
− p

(
bktc
k

)∥∥∥∥∥∥∥∥D(p(bktck
))∥∥∥∥ ,

≤
√
n max

1≤i≤n
max
0≤x≤1

|p′i(x)| max
x∈[0,1]

‖D(p(x))‖ ≡M,

where the second inequality follows by the mean value theorem. By continuity and com-

pactness, all of the above maxima exist, and M is therefore finite. Since t ∈ [0, 1) 7→ M is

obviously integrable, we can apply the dominated convergence theorem to obtain that

lim
k→∞

∫
[0,1)

φk(t)dt =

∫
[0,1)

p′(t) ·D(p(t))dt =

∫ 1

0

p′(t) ·D(p(t))dt.

Note that, for every k ≥ 1,∫
[0,1)

φk(t)dt =
k−1∑
j=1

(
p

(
j + 1

k

)
− p

(
j

k

))
·D
(
p

(
j

k

))
≥ 0,

where the inequality follows from condition (1) (recall that, by assumption, p(0) = p(1)).

Therefore,
∫ 1

0
p′(t) ·D(p(t))dt ≥ 0.

Next, let p̃(t) = p(1−t) for every t ∈ [0, 1]. Then, p̃ is C1, and p̃(0) = p̃(1) = 0. Therefore,∫ 1

0
p̃′(t) ·D(p̃(t))dt ≥ 0. Moreover,∫ 1

0

p̃′(t) ·D(p̃(t))dt =

∫ 1

0

−p′(1− t) ·D(p(1− t))dt,

=
x=1−t

∫ 0

1

p′(x) ·D(p(x))dx,

= −
∫ 1

0

p′(x) ·D(p(x))dx ≤ 0.

It follows that
∫ 1

0
p′(t) ·D(p(t))dt = 0. Therefore, D is conservative.
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4 Additional Results

In this section, we fix D, a continuous and quasi-linearly integrable demand system, and

derive additional results on the pair (X, u) constructed in Section 3.3. We also provide an

application to the analysis of quasi-linear demand systems in the presence of measurement

errors.

4.1 More on X

Proposition 1. X = Rn
+ if and only if p ∈ R++ 7→

∑n
i=1Di(p1n) is integrable on [1,∞).

Proof. We know from Lemma 3-(c) that X is comprehensive upward. It follows that X = Rn
+

if and only if 0 ∈ X. This holds if and only if inf p̃>>0 φ0(p̃) = inf p̃>>0 v(p̃) > −∞. We claim

that

inf
p̃>>0

v(p̃) = inf
p∈R++

v(p1n).

Since R++1n ⊆ Rn
++, it is clear that inf p̃>>0 v(p̃) ≤ infp∈R++ v(p1n). Next, let p̃ ∈ Rn

++, and

p̂ ≡ max1≤i≤n p̃i. Since ∇v = −D ≤ 0, v is non-increasing. Therefore,

v(p̃) ≥ v(p̂1n) ≥ inf
p∈R++

v(p1n).

Since the above inequality holds for every p̃ >> 0, it follows that inf p̃>>0 v(p̃) ≥ infp∈R++ v(p1n),

which establishes the claim.

Since d
dp
v(p1n) = −

∑n
i=1Di(p1n), the function p 7→ v(p1n) is non-increasing. It follows

that

inf
p∈R++

v(p1n) = lim
p→∞

v(p1n).

Therefore, X = Rn
+ if and only if limp→∞ v(p1n) > −∞.

By Lemma 13 in the appendix, there exists α ∈ R such that for every p > 0,

v(p1n) = α−
∫ 1

0

n∑
i=1

(p− 1)Di ((1− t+ tp)1n) dt,

= α−
∫ p

1

n∑
i=1

Di (r1n) dr,

where the second line follows by the change of variable r = (1− t+ tp). Therefore,

lim
p→∞

v(p1n) = α−
∫ +∞

1

n∑
i=1

Di (r1n) dr,

which, since demand is non-negative, is finite if and only if p ∈ R++ 7→
∑n

i=1Di(p1n) is

integrable on [1,∞).
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It is interesting to notice that the sub-utility function is defined everywhere if and only

if consumer surplus (defined as the surplus the consumer receives from the mere existence of

the market) is finite (and thus well-defined). Note that consumer surplus is not finite with

logit or CES demands without an outside option. Of course, no matter whether consumer

surplus is finite, the compensating variation and the equivalent variation when moving from

p to p′ are both equal to v(p)− v(p′) (as long as the non-negativity constraint on the outside

good is not binding).

Notice also that, since demand is non-negative, p ∈ R++ 7→
∑n

i=1Di(p1n) is integrable

on [1,∞) if and only if p ∈ R++ 7→ Di(p1n) is integrable on [1,∞) for every i. The following

result follows immediately from Proposition 1:

Corollary 1. If X = Rn
+, then limp→∞

∑n
i=1Di (p1n) = 0.

Proof. Let f(p) =
∑n

i=1Di (p1n) for every p ∈ R++. Note that, for every 0 < p < p′,

f(p′)− f(p) =
1

p′ − p
(p′1n − p1n) · (D(p′1n)−D(p1n)) ≤ 0,

since D satisfies the law of demand. Therefore, f is non-increasing, lim∞ f exists, and

infR++ f = lim∞ f .

Suppose lim∞ f = l > 0. Then,
∫∞
1
f ≥

∫∞
1
l = +∞. Therefore, f is not integrable, and,

by Proposition 1, X 6= Rn
+.

Again, since demand is non-negative, limp→∞
∑n

i=1Di (p1n) = 0 if and only ifDi (p1n) −→
p→∞

0 for every i. Next, we prove the (almost) converse of Corollary 1:

Proposition 2. If limp→∞
∑n

i=1Di (p1n) = 0, then Rn
++ ⊆ X.

Proof. Let q >> 0. Let q = min1≤i≤n qi. Suppose limp→∞
∑n

i=1Di (p1n) = 0. Then, there

exists p > 0 such that
∑n

i=1Di (p1n) < q. Since Di ≥ 0 for every i, it follows that Di(p1n) ≤
q ≤ qi for every i. Therefore, D(p1n) ≤ q and, by Lemma 3-(c), q ∈ X.

According to Theorem 1, CCH (R(D)) ⊆ X ⊆ CCCH (R(D)). This characterizes X

up to a set of Lebesgue measure zero. In general, it is not possible to obtain a tighter

characterization of X. Here are few examples and counterexamples:

• n = 1 and D(p) = 1
p
.

Since D is not integrable on [1,∞), by Proposition 1, X 6= R+ = CCCH (R(D)). Since

lim∞D = 0, by Proposition 2, X = R++ = CCH (R(D)).

• n = 1 and D(p) = 1
p2

.

Since D is integrable on [1,∞), by Proposition 1, X = R+ = CCCH (R(D)), and

X 6= R++ = CCH (R(D)).

• n = 2 and D(p) =
(

1
p1
, 1
p22

)
.

It is easy to see that X = R++ × R+, which is neither CCH (R(D))
(
= R2

++

)
nor

CCCH (R(D))
(
= R2

+

)
.
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4.2 Continuity and differentiability of u

Continuity. Lemma 10 can be strengthened, provided that consumer surplus is well de-

fined:

Proposition 3. If p ∈ R++ 7→
∑n

i=1Di(p1n) is integrable on [1,∞), then u is continuous

on X = Rn
+.

Proof. We already know from Lemma 9 and Proposition 1 that u is upper semi-continuous

on Rn
+. Assume for a contradiction that u is not lower semi-continuous at point x ∈ Rn

+. We

proceed as in the proof of Lemma 10, but we now have to take care of the fact that some

components of x may be equal to zero. There exists ε0 > 0 such that for every k ≥ 1, there

exists x̃k ∈ Rn
+ such that ‖x̃k − x‖ < 1

k
and u(x̃k) < u(x)− ε0. By definition of u, for every

k ≥ 1, there exists pk ∈ Rn
++ such that

pk · x̃k + v(pk) < u(x)− ε0.

Let vk = v(pk) for every k ≥ 1, and define

I = {i : 1 ≤ i ≤ n and xi 6= 0} .

For every k ≥ 1, for every 1 ≤ i ≤ n, let

xki =

{
x̃ki if i ∈ I,
0 otherwise.

Notice that ‖xk − x‖ ≤ ‖x̃k − x‖ < 1
k

and∑
i∈I

pki x
k
i + vk = pk · xk + vk < u(x)− ε0

for every k ≥ 1. By Proposition 1, u(0) = infp>>0 v(p) > −∞. Therefore, for every k,∑
i∈I

pki x
k
i < u(x)− u(0)− ε0.

If x = 0, then the above inequality yields an immediate contradiction, so suppose x 6= 0, and

choose 0 < η < mini∈I xi. Since xki −→
k→∞

xi > 0 for every i ∈ I, xki > η for k high enough.

Therefore, for high enough k, 0 < η
∑

i∈I p
k
i < u(x)− u(0)− ε0. It follows that

((
pki
)
i∈I

)
k≥1

is bounded. Therefore, there exists ψ1 : N∗ → N∗ strictly increasing and (pi)i∈I ∈ RI
+ such

that
(
p
ψ1(k)
i

)
i∈I
−→
k→∞

(pi)i∈I .

Next, notice that u(0) < vψ1(k) < u(x)− ε0 for every k. Therefore,
(
vψ1(k)

)
k≥1 is bounded

and there exists ψ2 : N∗ → N∗ strictly increasing and v ∈ R such that vψ1◦ψ2(k) −→
k→∞

v. Let
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ψ = ψ1 ◦ ψ2. We know that for every k ≥ 1,∑
i∈I

p
ψ(k)
i x

ψ(k)
i + vψ(k) < u(x)− ε0.

Taking limits, we get: ∑
i∈I

pixi + v ≤ u(x)− ε0.

Yet, by definition of u, for every k ≥ 1

u(x) ≤ pψ(k) · x+ v
(
pψ(k)

)
=
∑
i∈I

p
ψ(k)
i xi + vψ(k).

Taking limits, we obtain that u(x) ≤
∑

i∈I pixi + v, which is a contradiction.

Differentiability. We also prove some results on the differentiability of u. Lemma 12 is

not, strictly speaking, essential to prove differentiability of u but is of independent interest.

Lemma 12. Suppose that D is C1. Assume det (J(p0)) 6= 0 at some price vector p0 >> 0,

and let q0 = D(p0). There exists an open neighborhood of q0, denoted N , and a C1 function

P : N → Rn
++ such that for every p >> 0 and q ∈ N , q = D(p) if and only if p = P (q).

Proof. By the inverse function theorem, there exist open sets M and N such that p0 ∈ M,

q0 ∈ N , function D̃ : p ∈ M 7→ D(p) ∈ V is bijective, and P ≡ D̃−1 is C1. Let q ∈ N and

p ≡ P (q). By definition of P , q = D(p). Next, let p̂ 6= p in Rn
++. We want to show that

D(p̂) 6= q = D(p). A sufficient condition for this is that (p− p̂) · (D(p)−D(p̂)) 6= 0. Notice

that, for every 1 ≤ i ≤ n,

Di(p)−Di(p̂) =

∫ 1

0

n∑
j=1

(pj − p̂j)
∂Di

∂pj
((1− t)p̂+ tp) dt.

Therefore,

(p− p̂) · (D(p)−D(p̂)) =

∫ 1

0

∑
1≤i,j≤n

∂Di

∂pj
((1− t)p̂+ tp) (pj − p̂j)(pi − p̂i)dt,

=

∫ 1

0

(p− p̂) J ((1− t)p̂+ tp) (p− p̂)T dt.

Since J and the determinant function are continuous, there exists 0 < ε < 1 such that

det (J ((1− t)p̂+ tp)) 6= 0 for every t ∈ [0, ε]. It follows that J ((1− t)p̂+ tp) is negative

definite for every t ∈ [0, ε], and negative semi-definite for every t ∈ [ε, 1]. Therefore, for every

t ∈ [0, 1], (p− p̂) J ((1− t)p̂+ tp) (p− p̂)T ≤ 0, and the inequality is strict for every t ∈ [0, ε].

It follows that (p− p̂) · (D(p)−D(p̂)) < 0.

19



Proposition 4. Suppose that D is C1. Assume det (J(p0)) 6= 0 at some price vector p0 >> 0,

and let q0 = D(p0). There exists an open neighborhood of q0, denoted N , such that u is C1
on N . Moreover,

∇u(q0) = p0.

Proof. By Lemma 12, there exists an open neighborhood of q0, denoted N , and a C1 function

P : N → Rn
++ such that for every q ∈ N , D (P (q)) = q. Let q ∈ N . Then,

∇ φq(p)|p=P (q) = q −D (P (q)) = 0.

Therefore, P (q) is a global minimizer of φq(.), and

u(q) = φq (P (q)) = P (q) · q + v (P (q)) .

It follows that u is C1 on N . In addition, using the envelope theorem,

∇u(q0) = ∇q φq0(p)|p=P (q0)
= P (q0) = p0.

A special case, often encountered in the industrial organization literature, arises when

products are substitutes and total demand (
∑n

i=1Di) is strictly decreasing in every price:

Corollary 2. Assume that D is C1, and that, for every p >> 0, for every 1 ≤ i, j ≤ n such

that i 6= j, ∂Di

∂pj
(p) ≥ 0. Assume, in addition, that for every p >> 0, for every 1 ≤ i ≤ n,

n∑
j=1

∂Dj

∂pi
(p) < 0.

Then, u is C1 at every point of R(D).

Proof. Let p >> 0. For every 1 ≤ i ≤ n,∣∣∣∣∂Di

∂pi
(p)

∣∣∣∣ = −∂Di

∂pi
(p) >

∑
j 6=i

∂Dj

∂pi
(p) =

∑
j 6=i

∣∣∣∣∂Dj

∂pi
(p)

∣∣∣∣ .
Therefore, J(p) is strictly diagonally dominant and det (J(p)) 6= 0. By Proposition 4, u is C1
in an open neighborhood of D(p). Since this holds for every price vector, it follows that u is

C1 at every point of R(D).

4.3 A remark on the uniqueness of utility function u

There is a sense in which the utility function we constructed in Section 3.3 is unique “where

it matters.” Suppose that D can be derived from (X̃, ũ) and (X̂, û), and let ṽ and v̂ be the

corresponding indirect subutility functions. Then, by Lemma 1, there exists a scalar α such
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that ṽ = α+ v̂. Moreover, by definition of the indirect subutility functions, for every p >> 0,

ũ (D(p)) = ṽ(p) + p ·D(p),

û (D(p)) = v̂(p) + p ·D(p).

Therefore, for every q ∈ R(D), ũ(q) = α+ û(q). This means that, on the range of D, utility

functions ũ and û differ by a constant.

This remark implies that, provided that the range of D is nicely shaped (for instance, if

it is open and convex), if D can be derived from (X̃, ũ), then ũ inherits all the regularity,

monotonicity and convexity properties of u on R(D). For instance, if R(D) = Rn
++ and

D can be derived from (X̃, ũ), then ũ is increasing, convex and continuous on Rn
++. If, in

addition, products are substitutes and total demand is strictly decreasing in every price, then

ũ is C1 on Rn
++.

4.4 Measurement errors

In this section, we study quasi-linear integrability in the presence of measurement errors.

In doing so, we follow closely the approach proposed by Lewbel (2001) for the case without

an outside good. The demand function of a consumer with observable attributes a and

unobservable attributes ϕ is p → d(p, a, ϕ). The conditional probability distribution of the

unobservable attributes ϕ given (p, a) is assumed to have a compact support and a continuous

density. We also assume that the conditional probability distribution is independent of p.

Intuitively, we view the unobservable consumer attributes ϕ as preference parameters, which,

in line with classical demand theory, are not affected by prices. Finally, we assume that d is

continuous in (p, ϕ) for every a.

Next, we build a statistical model of consumer demand. For every (p, a), define

D(p, a) = E (d(p, a, ϕ)|(p, a)) =

∫
d(p, a, ϕ)f(ϕ|a)dϕ,

where f(·|a) is the conditional density of ϕ given a. Then,

d(p, a, ϕ) = D(p, a) + (d(p, a, ϕ)−D(p, a)) ≡ D(p, a) + ε(p, a, ϕ),

and, by definition, E(ε(p, a, ϕ)|(p, a)) = 0. This gives rise to the following econometric model:

qi = D(pi, ai) + εi, E(εi|pi, ai) = 0,

where the vector qi is consumer i’s demand for each product, pi is the vector of prices

consumer i has access to, and ai is consumer i’s observable attributes. Using Lewbel (2001)’s

terminology, D is the statistical, or econometric, demand function, whereas d is the economic

demand function.

Given the assumptions made above, it is easily seen that, if the economic demand function
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d(·, a, ϕ) is quasi-linearly integrable for every ϕ, then the statistical demand function D(·, a)

is quasi-linearly integrable. This follows because D(·, a) is continuous and, if, e.g., condition

(ii) in Theorem 1 holds for d(·, a, ϕ) for every ϕ, then it also holds for D(·, a).8

Suppose that an econometrician is interested in finding out whether the behavior of

consumers with observable attributes a can be rationalized by a quasi-linear utility function.

The econometrician would first obtain an estimate of the statistical demand function D̂. He

would then use condition (ii), (iii) or (iv) in Theorem 1 to test the null hypothesis that D(·, a)

is quasi-linearly integrable against the alternative hypothesis that it is not. By rejecting the

null hypothesis, the econometrician would provide statistical evidence that a positive mass

of consumers with observable attributes a behave in a way which is inconsistent with the

maximization of a quasi-linear utility function.

The statistical demand function can also be used to evaluate the average consumer surplus

effects of price changes. Suppose that d(·, a, ϕ) is quasi-linearly integrable for every ϕ, and

let C be a continuously differentiable path going from the original price vector to the new

price vector. Then, the average variation in money-metric consumer welfare for consumers

with attribute a is given by∫ (∫
C

d(p, a, ϕ) · dp
)
f(ϕ|a)dϕ =

∫
C

(∫
d(p, a, ϕ)f(ϕ|a)dϕ

)
· dp =

∫
C

D(p, a) · dp.

Therefore, the average variation in consumer surplus for consumers with observable attributes

a is equal to the variation in consumer surplus associated with the statistical demand function

D(·, a).

5 Relationship to the Rationalizability Literature

Complementary to the integrability approach, there is also a literature on rationalizabil-

ity, pioneered by Afriat (1967). That literature is concerned with the relationship between

preference maximization and various axioms of choice.

Brown and Calsamiglia (2007) derive necessary and sufficient conditions for a finite data

set (pi, di)i∈I ∈ (Rn
++ × Rn

+)I to be derivable from the maximization of a quasi-linear utility

function. They find that (pi, di)i∈I is quasi-linearly rationalizable if and only if for every

{r1, r2, . . . , rm} ⊆ I,

pr1 · (dr2 − dr1) + pr2 · (dr3 − dr2) + . . .+ prm · (dr1 − drm) ≥ 0.

This is equivalent to

(pr2 − pr1) · dr1 + (pr3 − pr2) · dr2 + . . .+ (pr1 − prm) · drm ≥ 0

8Of course, the converse is not true in general, i.e., D(·, a) could be quasi-linearly integrable even if
d(·, ϕ, a) is not quasi-linearly integrable for some ϕ’s.
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for every {r1, r2, . . . , rm} ⊆ I, which is the finite-data counterpart of our condition (1).

It is sometimes argued that rationalizability results with finite data are more useful than

those with infinite data, because, in practice, applied researchers never have access to infinite

data (see, e.g., Varian, 1982, 1983). An econometrician who has access to data on the same

consumer or household making choices from multiple budget sets could indeed use Brown and

Calsamiglia (2007)’s condition to test whether that consumer’s choices can be rationalized

by a quasi-linear utility function.9 However, applied researchers often do not have access to

such longitudinal data, and therefore need to rely on data for a cross-section of households,

with each household making a choice from a single budget set. While it would in principle

be possible to test whether these cross-sectional data satisfy a certain axiom of rationality,

such a test seems implausibly restrictive, since consumers are likely to have heterogeneous

preferences, even after controlling for observable consumer attributes.10 For this reason,

when longitudinal data are not available, it seems more reasonable to build a statistical

model with individual-specific, additive error terms, like the one we described in Section 4.4,

and test whether the statistical demand function is integrable by exploring the properties of

its Slutsky matrix (see Lewbel, 2001, for references).

In a recent paper, Nishimura, Ok, and Quah (2016) develop a general approach to revealed

preference theory in environments that go beyond the classical setting of consumer theory.

The starting point is a choice environment ((X,D),A), where (X,D) is a preordered set and

A ⊆ 2X \ {∅}. Nishimura, Ok, and Quah (2016) study both the finite-data case (|A| < ∞)

and the infinite-data case (|A| = ∞). The idea behind the preorder D is that, if x D y,

then any individual in the society prefers x to y. The authors derive conditions under which

a choice correspondence c : A ⇒ X (such that c(A) ⊆ A for every A) can be rationalized

(resp. weakly rationalized) by a preference relation % that extends D.11 They find that D-

rationalizability is equivalent to a generalized version of Afriat (1967)’s cyclical consistency

axiom, which they call the D-cyclical consistency axiom, and that strict D-rationalizability

is equivalent to a generalized version of Richter (1966)’s congruence axiom, called the D-

congruence axiom.

We can apply Nishimura, Ok, and Quah (2016)’s results to our setting as follows. The

set of objects of choice is X = Rn+1
+ . The exogenously given dominance relation D is defined

as follows: (q0, q)D (q′0, q) if and only if q0 ≥ q′0, for every q0, q
′
0 ≥ 0 and q ∈ Rn

+. The set A
is defined as A = {B(p, y)}(p,y)∈K, where

K =
{

(p, y) ∈ Rn
++ × R+ : p ·D(p) ≤ y

}
,

9In the presence of multiple households, the econometrician can simply check that condition separately
for each household, thereby allowing for arbitrary heterogeneity.

10A similar problem arises with longitudinal data when there are measurement errors.
11% weakly (resp. strictly) rationalizes c if for every A, c(A) is contained in (resp. equal to) the set of x’s

that maximize % in A.
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and, for every (p, y) ∈ K,

B(p, y) = {(q0, q) ∈ X : q0 + p · q ≤ y} .

The choice correspondence c is: For every B(p, y) ∈ A,

c (B(p, y)) = {(y − p ·D(p), D(p))} .

In the following, we say that D satisfies the D-cyclical consistency (resp. D-congruence)

axiom if c satisfies the D-cyclical consistency (resp. D-congruence) axiom. Similarly, we

say that D is weakly (resp. strictly) D-rationalizable if c is weakly (resp. strictly) D-

rationalizable. We prove the following proposition:

Proposition 5. Let D : Rn
++ −→ Rn

+ be a demand system:

(a) D satisfies the D-cyclical consistency axiom if and only if condition (1) holds for every

finite collection of prices. Therefore, D can be weakly rationalized by a preference

relation % that is strictly monotone in the consumption of the outside good if and only

if condition (1) holds for every finite collection of price vectors.

(b) D satisfies the D-congruence axiom if and only if, for every k ≥ 2 and (pi)1≤i≤k ∈
(Rn

++)k, condition (1) holds, and

(p2 − p1) ·D(p1) + (p3 − p2) ·D(p2) + . . .+ (p1 − pk) ·D(pk) = 0,~w�
D(p1) = D(p2) = . . . = D(pk)

(3)

Therefore, D can be strictly rationalized by a preference relation % that is strictly mono-

tone in the consumption of the outside good if and only if conditions (1) and (3) hold

for every finite collection of prices.

(c) If D is continuous, then the D-cyclical consistency axiom and the D-congruence axiom

are equivalent.

Proof.

(a). In our setting, the D-cyclical consistency axiom can be rewritten as follows: For every

k ≥ 2, (pi)1≤i≤k, and (yi)1≤i≤k, if (p2 − p1) ·D(p1) ≤ y2 − y1, (p3 − p2) ·D(p2) ≤ y3 − y2, . . . ,

and (p1− pk) ·D(pk) ≤ y1− yk, then, (p2− p1) ·D(p1) = y2− y1, (p3− p2) ·D(p2) = y3− y2,
. . . , and (p1 − pk) ·D(pk) = y1 − yk.

Suppose that the D-congruence axiom does not hold. Then, there exist k ≥ 2, (pi)1≤i≤k,

and (yi)1≤i≤k such that (p2 − p1) ·D(p1) ≤ y2 − y1, . . . , (p1 − pk) ·D(pk) ≤ y1 − yk with at
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least one strict inequality. It follows that

(p2 − p1) ·D(p1) + . . .+ (p1 − pk) ·D(pk) < y2 − y1 + . . .+ y1 − yk = 0,

i.e., condition (1) does not hold for (pi)1≤i≤k.

Conversely, suppose that condition (1) does not hold for some (pi)1≤i≤k. As in the proof

of Lemma 11, choose a high enough x, and define yi = x+
∑i−1

j=1(p
j+1−pj) ·D(pj) for every i.

Then, for every 1 ≤ i ≤ k− 1, (pi+1− pi) ·D(pi) = yi+1− yi, and (p1− pk) ·D(pk) < y1− yk.
Therefore, the D-cyclical consistency axiom does not hold.

(b). By Proposition 6 in Nishimura, Ok, and Quah (2016), D satisfies the D-congruence

axiom if and only if it satisfies the D-cyclical consistency axiom, and, for every every k ≥ 2,

(pi)1≤i≤k, and (yi)1≤i≤k, (p2 − p1) · D(p1) ≤ y2 − y1, (p3 − p2) · D(p2) ≤ y3 − y2, . . . , and

(p1 − pk) ·D(pk) ≤ y1 − yk implies that(
y1 − p1 ·D(p1), D(p1)

)
=
(
y2 − p2 ·D(p2), D(p2)

)
= . . . =

(
yk − pk ·D(pk), D(pk)

)
.

It is straightforward to adapt the argument used in part (a) to show that this is equivalent

to conditions (1) and (3) being satisfied for every finite collection of prices.

(c). Assume that D is continuous and satisfies D-cyclical consistency. Then, by part (a)

and Theorem 1, D is quasi-linearly integrable. Let (X, u) such that D can be derived from

(X, u) (and recall from Definition 3 that (X, u) provides a strict rationalization). Let % be

the preference relation produced by (X, u). Let k ≥ 2, (pi)1≤i≤k, and (yi)1≤i≤k, such that

(p2 − p1) ·D(p1) ≤ y2 − y1, . . . , (p1 − pk) ·D(pk) ≤ y1 − yk. Then, for every 1 ≤ i ≤ k,12(
yi+1 − pi+1 ·D(pi+1), D(pi+1)

)
%
(
yi − pi ·D(pi), D(pi)

)
.

Therefore, by transitivity, for every i,(
yi+1 − pi+1 ·D(pi+1), D(pi+1)

)
∼
(
yi − pi ·D(pi), D(pi)

)
.

Suppose that (yi+1− pi+1 ·D(pi+1), D(pi+1)) 6= (yi− pi ·D(pi), D(pi)) for some i. Then, since

(yi− pi ·D(pi), D(pi)) is feasible at price vector pi+1 and income level yi+1, and by definition

of %, it follows that(
yi+1 − pi+1 ·D(pi+1), D(pi+1)

)
�
(
yi − pi ·D(pi), D(pi)

)
,

which is a contradiction. Therefore, D satisfies the D-congruence axiom.

Parts (a) and (b) allow us to obtain a rationalizing preference relation % when D is

not continuous, a case Theorem 1 cannot handle. If D is continuous, then Proposition 5

12The index i is taken modulo k, so that k + 1 = 1.
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is significantly weaker than Theorem 1 in the following sense: The preference relation %
delivered by Proposition 5 (1) may or may not be quasi-linear, (2) may or may not have a

utility representation, (3) may or may not be convex, (4) may or may not be monotone, (5)

may or may not be continuous.13 Moreover, (6) Nishimura, Ok, and Quah (2016)’s approach

is based on the axiom of choice, and, hence, non-constructive. Our Theorem 1 provides a

strict improvement along all those dimensions.

Finally, by part (c), if demand is continuous, then the D-cyclical consistency axiom and

the D-congruence axiom are equivalent. This is not necessarily true when demand is not

continuous. To see this, consider the following counterexample with n = 2:

D(p1, p2) =


(1, 0) if p1 < p2,

(0, 1) if p1 > p2,

(α(p1), 1− α(p1)) if p1 = p2,

where α(x) ≡ x/(1 + x) for all x > 0. Note that D can be weakly D-rationalized by the

following utility function:

∀(q0, q1, q2) ∈ R3
+, U(q0, q1, q2) =

{
eq0 if q1 + q2 ≥ 1,

− e−q0 if q1 + q2 < 1.

Therefore, D satisfies the D-cyclical consistency axiom. Note however that, for every x, x′ > 0

such that x 6= x′, we have that D(x′, x′) 6= D(x, x), but

((x′, x′)− (x, x)) · (D(x′, x′)−D(x, x)) = (x′ − x, x′ − x) · (α(x′)− α(x), α(x)− α(x′)) = 0.

Therefore, D does not satisfy the D-congruence axiom.

A Appendix: Technical Lemmas

The following lemmas are well known, but, since they play an important role in our analysis,

we provide short proofs of them.

Lemma 13. Let D : Rn
++ −→ Rn

+ be a continuous function. Then, D has a potential (i.e.,

there exists a function v such that ∇v = −D) if and only if D is conservative (i.e., for every

closed and piecewise-C1 path C,
∫
C
D(p) · dp = 0). In addition, if D is C1, then D has a

potential if and only if the matrix J(p) =
(
∂Di

∂pj
(p)
)
1≤i,j≤n

is symmetric for every p >> 0.

13One way of addressing concerns (2) and (5) would be to apply Nishimura, Ok, and Quah (2016)’s Theorem
4, which delivers a continuous preference relation, and hence, a continuous utility representation. In order
to apply that theorem, one would first need to prove that the transitive closure of the union of the direct
revealed preference relation and the preorder D is a continuous preorder, which seems impractical in our
framework.
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Moreover, v is a potential for D if and only if there exists α ∈ R such that

v(p) = α−
∫ 1

0

(p− 1n) ·D (tp+ (1− t)1n) dt, ∀p >> 0. (4)

Proof. Suppose that D has a potential, i.e., there exists v : R++ −→ R such that ∇v = −D.

Then, for every closed and piecewise-C1 path C starting at point p0 >> 0,∫
C

D(p) · dp = v(p0)− v(p0) = 0.

Moreover, if D is C1, then v has continuously differentiable partial derivatives. Therefore, v

is C2, and, by Schwarz’s theorem, J(p) is symmetric for every p.

Conversely, suppose that D is conservative. Define the function v as in equation (4) with

α = 0. Since D is conservative, we have that, for every p, p′ >> 0,∫ 1

0

(p− 1n) ·D (tp+ (1− t)1n) dt+

∫ 1

0

(p′ − p) ·D (tp′ + (1− t)p) dt

+

∫ 1

0

(1n − p′) ·D (t1n + (1− t)p′) dt = 0,

i.e.,

v(p′)− v(p) = −(p′ − p) ·
∫ 1

0

D (tp′ + (1− t)p) dt.

It follows that

v(p′)− v(p) + (p′ − p) ·D(p)

‖p′ − p‖
=

p′ − p
‖p′ − p‖︸ ︷︷ ︸
bounded

·
∫ 1

0

(D(p)−D (tp′ + (1− t)p)) dt︸ ︷︷ ︸
−→
p′→p

0, by continuity of D

.

Therefore, ∇v = −D, and D has a potential.

Next, suppose that D is C1 and J(p) is symmetric for every p. To ease notation, let

r(p, t) = 1n + t(p− 1n), and define the function v as in equation (4) with α = 0. For every j

in {1, . . . , n},

∂v

∂pj
= −

∫ 1

0

Dj (r(p, t)) dt−
∫ 1

0

t

n∑
i=1

(pi − 1)
∂Di

∂pj
(r(p, t)) dt,

= −
∫ 1

0

Dj (r(p, t)) dt−
∫ 1

0

t

n∑
i=1

(pi − 1)
∂Dj

∂pi
(r(p, t)) dt,

= −
∫ 1

0

Dj (r(p, t)) dt−
([
tDj (r(p, t))

]1
0
−
∫ 1

0

Dj (r(p, t)) dt

)
,

= −Dj(p),
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where the second equality follows from the symmetry of J and the third equality follows by

integration by parts. Therefore, ∇v = −D, and D has a potential.

Finally, suppose that v and w are such that ∇v = ∇w = −D. Let f = v − w. Then,

∇f = 0. Since Rn
++ is convex, we can apply Theorem 9.19 in Rudin (1976) to conclude that

f is constant. This shows that v is a potential for D if and only if v can be written as in

equation (4).

Lemma 14. Let v : Rn
++ −→ R be a C1 function. Define D = −∇v. Then, v is convex if

and only if D satisfies the law of demand.

Proof. Let p, p′ >> 0. Define the function f(t) = v(p+ t(p′ − p)) on interval [0, 1], and note

that

f ′(t) = −(p′ − p) ·D(p+ t(p′ − p)).

Assume that v is convex. Then, for every t, t′, λ ∈ [0, 1],

f(λt+ (1− λ)t′) = v (λ(p+ t(p′ − p)) + (1− λ)(p+ t′(p′ − p))) ,
≤ λf(t) + (1− λ)f(t′),

so f is convex as well. It follows that f ′ is non-decreasing. In particular,

0 ≤ f ′(1)− f ′(0) = −(p′ − p) · (D(p′)−D(p)).

Therefore, D satisfies the law of demand.

Conversely, suppose that D satisfies the law of demand. Then, for every t, t′ ∈ [0, 1] such

that t′ > t,

f(t′)− f(t) = −(p′ − p) · (D(p+ t′(p′ − p))−D(p+ t(p′ − p))) ≥ 0.

Therefore, f is convex, and for every t ∈ [0, 1],

v((1− t)p+ tp′) = f(t) ≤ (1− t)f(0) + tf(1) = (1− t)v(p) + tv(p′).

Therefore, v is convex.
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