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I The Demand System

I.1 Discrete/Continuous Choice

We consider a demand model in which consumers make discrete/continuous choices: Each

consumer first decides which product to purchase, and then, how much of this product to

consume. This approach captures Novshek and Sonnenschein (1979)’s idea that price-induced

demand changes can be decomposed into two effects: An intensive margin effect (consumers

purchase less of the product whose price was raised), and an extensive margin effect (some

consumers stop purchasing the commodity whose price increased).1,2

We formalize discrete/continuous choice as follows. There is a population of consumers

with quasi-linear preferences. Each consumer chooses a single product from a finite and

non-empty set of products N ∪ {0}, where good 0 denotes the outside option. After having

chosen good i ∈ N , the consumer under consideration chooses the quantity of that product,

and spends the rest of his income on the outside good (or Hicksian composite commodity),

the price of which is normalized to one. Conditional on selecting product i, the consumer

receives indirect utility y + vi(pi) + εi, where pi is the price of product i, y is the consumer’s

income, and εi is a taste shock. By Roy’s identity, the consumer purchases −v′i(pi) units of

good i. We call −v′i(pi) the conditional demand for product i. If the consumer chooses the

outside option, then he simply receives the utility flow y + logH0 + ε0, where H0 ≥ 0. At

the product-choice stage, the consumer selects product i only if

∀j ∈ N , y + vi(pi) + εi ≥ y + vj(pj) + εj

and

y + vi(pi) + εi ≥ y + logH0 + ε0.

We assume that the components of vector (εj)j∈N∪{0} are identically and independently drawn

from a type-1 extreme value distribution. By Holman and Marley’s theorem, product i is

therefore chosen with probability

Pi(p) = Pr

(
vi(pi) + εi = max

(
logH0 + ε0,max

j∈N
(vj(pj) + εj)

))
,

=
evi(pi)∑

j∈N evj(pj) +H0
,

=
hi(pi)∑

j∈N hj(pj) +H0
,

1Income effects are absent in our quasi-linear world.
2See also Hanemann (1984).
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where hj ≡ evj for every j. It follows that the expected demand for product i is given by

Di =
hi(pi)∑

j∈N hj(pj) +H0
(−v′i(pi)) =

−h′i(pi)∑
j∈N hj(pj) +H0

.

In the following, we use the tuple ((hj)j∈N , H
0) (rather than (vj)j∈N and logH0) as primitives.

We assume that all the h functions are C3 from R++ to R++, strictly decreasing, and log-

convex. The assumption that hj is non-increasing and log-convex is necessary and sufficient

for vj to be an indirect subutility function. The assumption that hj is strictly decreasing

means that the demand for product j never vanishes.

To sum up, the demand system generated by the discrete/continuous choice model ((hj)j∈N ,

H0) (when normalizing market size to one) is:

Di

(
(pj)j∈N

)
=

−h′i(pi)∑
j∈N hj(pj) +H0

, ∀i ∈ N , ∀ (pj)j∈N ∈ RN++. (i)

The conditional demand for good i is −d log hi/dpi = −h′i/hi. Product i is chosen with

probability hi/(
∑

j hj +H0).

The consumer’s expected utility can be computed using standard formulas (see, e.g.,

Anderson, de Palma, and Thisse, 1992):

E
(
y + max

(
logH0 + ε0,max

j∈N
vj(pj) + εj

))
= y + log

(∑
j∈N

evj(pj) +H0

)
, (ii)

= y + log

(∑
j∈N

hj(pj) +H0

)
.

Consumer heterogeneity. While the discrete/continuous consumer choice model allows

for some type of consumer heterogeneity (different consumers receive different taste shocks

and may therefore select different products), it does have the property that all consumers who

select the same product choose to purchase the same quantity. However, the model can easily

be adapted to accommodate consumer heterogeneity in the quantity purchased of the same

product. In particular, suppose that the indirect subutility derived from choosing product j

is vj(pj, tj), where tj ∈ R is the consumer’s “type” for product j, drawn from the probability

distribution Gj(·). The realized value of tj is observed by the consumer only after he has

chosen product j. Let vj(pj) =
∫
vj(pj, tj)dGj(tj) be the expected indirect utility derived

from product j. Then, product i is chosen with probability exp vi(pi)/(
∑

j exp vj(pj) +H0).

Under some technical conditions (which allow us to differentiate under the integral sign), the

consumer’s expected conditional demand for product j is:∫
− ∂

∂pj
vj(pj, tj)dGj(tj) = − ∂

∂pj

∫
vj(pj, tj)dGj(tj) = −v′j(pj).
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Therefore, if we define hj(pj) = exp(vj(pj)) for every j, then the expected (unconditional)

demand for product i is still given by equation (i). Differentiating once more under the

integral sign, we also see that vj(·) is decreasing and convex if vj(·, tj) is decreasing and

convex for every tj. Therefore, discrete/continuous choice with consumer heterogeneity gives

rise to the same class of demand systems as discrete/continuous choice without heterogeneity.

Note however that, if the consumer observes his vector of types before choosing a variety,

then the implied demand system becomes a mixture of equation (i). We are not able to

handle such mixtures of demand systems, because they no longer give rise to an aggregative

game. This implies in particular that our approach cannot accommodate random coefficient

logit demand systems. At the end of Section VII.1, we show how a restricted class of random

coefficient logit demand systems can be handled.

I.2 Representative Consumer Approach

We now show that the demand system (i) can also be derived from the maximization of the

utility function of a representative consumer with quasi-linear preferences. To this end, we

first prove the following proposition:

Proposition I. Let N be a finite and non-empty set. For every k ∈ N , let hk (resp. gk)

be a C2 (resp. C1) function from R++ to R++. Suppose that h′k < 0 for every k. Define the

demand system D as follows:

Dk

(
(pj)j∈N

)
=

gk(pk)∑
j∈N hj(pj)

, ∀k ∈ N , ∀ (pj)j∈N ∈ RN++

The following assertions are equivalent:3

(i) D is quasi-linearly integrable.

(ii) There exists a strictly positive scalar α such that, for every k ∈ N , gk = −αh′k.
Moreover, h′′k > 0 for every k ∈ N , and

∑
k∈N γk ≤

∑
k∈N hk, where γk = h′2k /h

′′
k for

every k ∈ N .

When this is the case, the function v(.) is an indirect subutility function for the associated

demand system if and only if there exists β ∈ R such that v(p) = α log
(∑

j∈N hj(pj)
)

+ β

for every p >> 0.

To prove Theorem I, we first state and prove two technical lemmas:

3Quasi-linear integrability and indirect subutility functions are defined in Nocke and Schutz (2017b),
Definitions 3 and 4.
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Lemma I. For every n ≥ 1, for every (αi)1≤i≤n ∈ Rn, define

M
(
(αi)1≤i≤n

)
=


1− α1 1 · · · 1

1 1− α2 · · · 1
...

...
. . .

...

1 1 · · · 1− αn


Then,4

det
(
M
(
(αi)1≤i≤n

))
= (−1)n


(

n∏
k=1

αk

)
−

n∑
j=1

 ∏
1≤k≤n
k 6=j

αk




Moreover, the matrix M
(
(αi)1≤i≤n

)
is negative semi-definite if and only if αi ≥ 1 for all

1 ≤ i ≤ n and
n∑
i=1

1

αi
≤ 1.

Proof. We prove the first part of the lemma by induction on n ≥ 1. Start with n = 1. Then,

det
(
M
(
(αi)1≤i≤n

))
= 1− α1 = (−1)1(α1 − 1),

so the property is true for n = 1.

Next, let n ≥ 2, and assume the property holds for all 1 ≤ m < n. By n-linearity of the

determinant,

det
(
M
(
(αi)1≤i≤n

))
= (−α1)

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

0 1− α2 · · · 1
...

...
. . .

...

0 1 · · · 1− αn

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

1 1− α2 · · · 1
...

...
. . .

...

1 1 · · · 1− αn

∣∣∣∣∣∣∣∣∣ .
Applying Laplace’s formula to the first column, we can see that the first determinant is,

in fact, equal to det
(
M
(
(αi)2≤i≤n

))
. The second determinant can be simplified by using

n-linearity one more time:∣∣∣∣∣∣∣∣∣
1 1 · · · 1

1 1− α2 · · · 1
...

...
. . .

...

1 1 · · · 1− αn

∣∣∣∣∣∣∣∣∣ = −α2

∣∣∣∣∣∣∣∣∣
1 0 · · · 1

1 1 · · · 1
...

...
. . .

...

1 0 · · · 1− αn

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1− αn

∣∣∣∣∣∣∣∣∣ ,

= −α2 det
(
M
(
0, (αi)3≤i≤n

))
+ 0,

4We adopt the convention that the product of an empty collection of real numbers is equal to 1.
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where the second line follows again from Laplace’s formula and from the fact that the first

two rows of the second matrix in the first line’s right-hand side are collinear. Therefore,

detM
(
(αi)1≤i≤n

)
= − α1 det

(
M
(
(αi)2≤i≤n

))
− α2 det

(
M
(
0, (αi)3≤i≤n

))
,

= − α1(−1)n−1


(

n∏
k=2

αk

)
−

n∑
j=2

 ∏
2≤k≤n
k 6=j

αk




− α2(−1)n−1

(
0−

n∏
k=3

αk

)
,

= (−1)n


(

n∏
k=1

αk

)
−

n∑
j=2

 ∏
1≤k≤n
k 6=j

αk

− n∏
k=2

αk

 ,

= (−1)n


(

n∏
k=1

αk

)
−

n∑
j=1

 ∏
1≤k≤n
k 6=j

αk


 .

We now turn our attention to the second part of the lemma. Assume first that the matrix

M
(
(αi)1≤i≤n

)
is negative semi-definite. Then, all its diagonal terms have to be non-positive,

i.e., αi ≥ 1 for all i. Besides, the determinant of this matrix should be non-negative (resp.

non-positive) if n is even (resp. odd). Put differently, the sign of the determinant should be

(−1)n or 0. Since the α’s are all different from zero, this determinant can be simplified as

follows:

det
(
M
(
(αi)1≤i≤n

))
= (−1)n

(
n∏
k=1

αk

)(
1−

n∑
k=1

1

αk

)
.

This expression has sign (−1)n or 0 if and only if
∑n

k=1
1
αk
≤ 1.

Conversely, assume that the α’s are all ≥ 1, and that
∑n

k=1
1
αk
≤ 1. The characteristic

polynomial of the matrix M
(
(αi)1≤i≤n

)
is defined as

P (X) =

∣∣∣∣∣∣∣∣∣
1− α1 −X 1 · · · 1

1 1− α2 −X · · · 1
...

...
. . .

...

1 1 · · · 1− αn −X

∣∣∣∣∣∣∣∣∣ .
This determinant can be calculated using the first part of the lemma. For every X > 0,

(−1)nP (X) =

(
n∏
k=1

(αk +X)

)
︸ ︷︷ ︸

>0

(
1−

n∑
k=1

1

αk +X

)
,
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>

(
n∏
k=1

(αk +X)

)
︸ ︷︷ ︸

>0

(
1−

n∑
k=1

1

αk

)
︸ ︷︷ ︸

≥0

,

> 0.

Therefore, P (X) has no strictly positive root, the matrix M
(
(αi)1≤i≤n

)
has no strictly

positive eigenvalue, and this matrix is therefore negative semi-definite.

Lemma II. Let M be a symmetric n-by-n matrix, λ 6= 0, and 1 ≤ k ≤ n. Let Ak be the

matrix obtained by dividing the k-th line and the k-th column of M by λ. Then, M is negative

semi-definite if and only if Ak is negative semi-definite.

Proof. Suppose M is negative semi-definite, and let X ∈ Rn. Write Ak as (aij)1≤i,j≤n and M

as (mij)1≤i,j≤n. Finally, define Y as the n-dimensional vector obtained by dividing X’s k-th

component by λ. Then,

X ′AkX =
n∑
i=1

n∑
j=1

aijxixj,

=

∑
1≤i≤n
i 6=k

∑
1≤j≤n
j 6=k

aijxixj

+ 2xk
∑

1≤i≤n
i 6=k

aikxi + x2
kakk,

=

∑
1≤i≤n
i 6=k

∑
1≤j≤n
j 6=k

mijxixj

+ 2
xk
λ

∑
1≤i≤n
i 6=k

mikxi +
(xk
λ

)2

mkk,

=

∑
1≤i≤n
i 6=k

∑
1≤j≤n
j 6=k

mijyiyj

+ 2yk
∑

1≤i≤n
i 6=k

mikyi + y2mkk,

= Y ′MY,

≤ 0, since M is negative semi-definite.

Therefore, Ak is negative semi-definite.

The other direction is now immediate, since M can be obtained by dividing the k-th line

and the k-th column of the matrix Ak by 1/λ.

We can now prove Proposition I:

Proof. To simplify notation, assume without loss of generality that N = {1, . . . , n}. For

every p >> 0, put J(p) =
(
∂Di
∂pj

(p)
)

1≤i,j≤n
. Theorem 1 in Nocke and Schutz (2017b) states
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that D is quasi-linearly integrable if and only if J(p) is symmetric and negative semi-definite

for every p >> 0.

We first show that the matrix J(p) is symmetric for every p if and only if there exists a

strictly positive scalar α such that, for every k ∈ N , gk = −αh′k. If J(p) is symmetric for

every p, then, for every 1 ≤ i, j ≤ n such that i 6= j, for every p >> 0,

−
h′j(pj)gi(pi)(∑
k∈N hk(pk)

)2 = Ji,j(p) = Jj,i(p) = − h′i(pi)gj(pj)(∑
k∈N hk(pk)

)2 .

It follows that, for every 1 ≤ i ≤ n, for every x > 0,

h′i(x)

gi(x)
=
h′1(1)

g1(1)
≡ −β (iii)

If β = 0, then h′i = 0 for every i, which violates the assumption that hi is strictly decreasing.

Therefore, β 6= 0, and we can define α ≡ 1/β. It follows that gi = −αh′i. Since gi > 0 and

h′i ≤ 0, we can conclude that α > 0. Conversely, if there exists a strictly positive scalar α

such that, for every k ∈ N , gk = −αh′k, then, for every 1 ≤ i, j ≤ n, i 6= j, for every p >> 0,

Ji,j(p) = −
h′j(pj)gi(pi)(∑
k∈N hk(pk)

)2 = α
h′j(pj)h

′
i(pi)(∑

k∈N hk(pk)
)2 = Jj,i(p),

and the matrix J(p) is therefore symmetric for every p.

Next, suppose that there exists α > 0 such that, for every 1 ≤ k ≤ n, gk = −αh′k. We

want to show that J(p) is negative semi-definite for every p >> 0 if and only if h′′k > 0 for

every 1 ≤ k ≤ n, and
∑n

k=1 γk ≤
∑n

k=1 hk.

Fix p >> 0. To ease notation, we write hk = hk(pk) for every k, and define H ≡
∑

k∈N hk.

We obtain the following expression for the matrix J(p):

J(p) =
α

H2


(h′1)2 − h′′1H h′1h

′
2 · · · h′1h

′
n

h′2h
′
1 (h′2)2 − h′′2H · · · h′2h

′
n

...
...

. . .
...

h′nh
′
1 h′nh

′
2 · · · (h′n)2 − h′′nH

 .

J(p) is negative semi-definite if and only if
(h′1)2 − h′′1H h′1h

′
2 · · · h′1h

′
n

h′2h
′
1 (h′2)2 − h′′2H · · · h′2h

′
n

...
...

. . .
...

h′nh
′
1 h′nh

′
2 · · · (h′n)2 − h′′nH


is negative semi-definite. Applying Lemma II n times (by dividing row k and column k by

10



h′k, 1 ≤ k ≤ n), this is equivalent to the matrix
1− h′′1

(h′1)
2H 1 · · · 1

1 1− h′′2

(h′2)
2H · · · 1

...
...

. . .
...

1 1 · · · 1− h′′n
(h′n)2H


being negative semi-definite. By Lemma I, this holds if and only if

h′′k

(h′k)
2H ≥ 1 for all 1 ≤

k ≤ n, and 1
H

∑n
k=1

(h′k)
2

h′′k
≤ 1. This is equivalent to h′′k > 0 for all k, and

∑n
k=1 γk ≤

∑n
k=1 hk.

Finally, Nocke and Schutz (2017b) show that, v is an indirect subutility function for the

demand system D if and only if ∇v = −D. Clearly, this is equivalent to

v(p) = α log

(∑
j∈N

hj(pj)

)
+ β, ∀p >> 0,

where β ∈ R is a constant of integration.

Proposition I immediately implies the following corollary:

Corollary I. Let D be the demand system generated by the discrete/continuous choice

model ((hj)j∈N , H
0). D is quasi-linearly integrable. Moreover, v is an indirect subuti-

lity function for D if and only if there exists a constant α ∈ R such that v((pj)j∈N ) =

α + log
(∑

j∈N hj(pj) +H0
)

.

Proof. Note that, for every product i,

(log hi)
′′ =

h′′i hi − h′2i
h2
i

.

By log-convexity of hi, h
′′
i > 0. Moreover,

(log hi)
′′ =

h′′i
h2
i

(hi − γi) ≥ 0.

Hence, hi ≥ γi for every i. This implies in particular that∑
k∈N

hk +H0 ≥
∑
k∈N

γk.

11



For every i ∈ N , let h̃i = hi +H0/|N |. Note that, for every i and p,

D̃i(p) ≡
−h̃′i(pi)∑
j∈N h̃j(pj)

=
−h′i(pi)∑

j∈N hj(pj) +H0
= Di(p).

Clearly, (h̃j)j∈N satisfies condition (ii) in Proposition I. Hence, the demand system D̃ = D

is quasi-linearly integrable. Moreover, v is an indirect subutility function for that demand

system if and only if

v(p) = α + log
∑
j∈N

h̃j(pj) = α + log

(∑
j∈N

hj(pj) +H0

)

for some α ∈ R.

Hence, any demand system that can be derived from discrete/continuous choice can also

be derived from quasi-linear utility maximization. The second part of the corollary says that

the expected utility of a consumer engaging in discrete/continuous choice and the indirect

utility of the associated representative consumer coincide (up to an additive constant). The

results we derive on consumer welfare therefore do not depend on the way the demand system

has been generated. Whether we use discrete/continuous choice or a representative consumer

approach, all that matters is the value of the aggregator H.

II Pricing Game: Preliminaries

II.1 Proof of Lemma A

Proof. (a) We first show that limp→∞ ph
′(p) exists. By the fundamental theorem of calculus,

for every p > 0,

h(p) = h(1) +

∫ p

1

h′(x)dx = h(1) + ph′(p)− h′(1)−
∫ p

1

xh′′(x)dx,

where the second line was obtained by integrating by parts. Therefore, ph′(p) = h(p) −
h(1) +h′(1) +

∫ p
1
xh′′(x)dx. Since h is positive and decreasing, that function has a finite limit

at ∞. We now show that
∫ p

1
xh′′(x)dx also has a limit at infinity. Since h is log-convex,

(log h)′′ = h′′h−h′2
h2 ≥ 0. It follows that h′′ ≥ 0. Therefore, the function p 7→

∫ p
1
xh′′(x)dx is

non-decreasing, and that function has a limit at infinity. It follows that limp→∞ ph
′(p) exists.

Since h′ < 0, that limit is non-positive.

Assume for a contradiction that limp→∞ ph
′(p) < 0. Then, there exist ε0 > 0 and p0 > 0

such that ph′(p) ≤ −ε0 for all p ≥ p0. Rewrite this inequality as h′(p) ≤ −ε0/p, and integrate

12



it between p0 and p to get

h(p)− h(p0) ≤ −ε0 log

(
p

p0

)
−→
p→∞

−∞.

Therefore, limp→∞ h(p) = −∞. This contradicts the assumption that h > 0.

Therefore, limp→∞ ph
′(p) = 0, and limp→∞ h

′(p) = 0.

(b) Assume for a contradiction that ι(p) ≤ 1 for all p > 0. Then, for all p > 0, ph′′(p) +

h′(p) ≤ 0, i.e., d
dp

(ph′(p)) ≤ 0. It follows that ph′(p) ≤ h′(1) for all p ≥ 1. Taking the limit

as p goes to infinity and using point (a), we obtain that h′(1) ≥ 0, a contradiction.

Therefore, there exists p̂ > 0 such that ι(p̂) > 1. It follows that

p ≡ inf {p ∈ R++ : ι(p) > 1} <∞.

We prove two claims:

Claim 1: p /∈ {p > 0 : ι(p) > 1}.
If p = 0, then this is obvious. If instead p > 0, then the claim follows from the continuity

of ι.

Claim 2: ι(y) ≥ ι(x) whenever 0 < x < y and ι(x) > 1.

Assume for a contradiction that ι(y) < ι(x). Put S = {z ∈ [x, y] : ι(z) ≤ 1}. If S is

empty, then ι(z) > 1 for every z ∈ [x, y]. Hence, ι′(z) ≥ 0 for every z ∈ [x, y]. It follows that

ι(y) ≥ ι(x), which is a contradiction.

Next, assume that S is not empty. Then, ŷ ≡ inf S ∈ [x, y]. Moreover, by continuity of

ι, and since ι(x) > 1, ι(ŷ) = 1. In addition, ι(z) > 1 for every z ∈ [x, ŷ). Using the same

reasoning as above, it follows that

1 = ιk(ŷ) ≥ ιk(x) > 1,

which is a contradiction.

Combining Claims 1 and 2, it follows that {p > 0 : ι(p) > 1} =
(
p,∞

)
, and that ι is

non-decreasing on
(
p,∞

)
, which proves point (b).

(c) Since ι is non-decreasing and strictly greater than 1 on (p,∞), µ̄ exists, and is strictly

greater than 1.

(d) Let p > p. Note that

γ(p) =
−h′(p)
ph′′(p)

(p(−h′(p))) =
−ph′(p)
ι(p)

.
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Therefore,

γ′(p) =
1

(ι(p))2 (− (ph′′(p) + h′(p))× ι(p) + ι′(p)× ph′(p)) ,

=
1

(ι(p))2 (−h′(p) (1− ι(p)) ι(p) + ι′(p)ph′(p)) < 0,

as ι′ ≥ 0 and ι(p) > 1 for all p > p.

(e) The result follows immediately from the fact that γ(p) = −ph′(p)/ι(p) (see above),

limp→∞ ph
′(p) = 0 (point (a)), and lim∞ ι > 0 (point (c)).

(f) Suppose µ̄ <∞ and limp→∞ h(p) = 0. For all p > p,

ρ(p) =
h(p)h′′(p)

(h′(p))2 =
ph′′(p)

−h′(p)
h(p)

−ph′(p)
= ι(p)

h(p)

−ph′(p)
.

By assumption, limp→∞ h(p) = 0. By point (a), limp→∞−ph′(p) = 0. Moreover,

lim
p→∞

d
dp
h(p)

d
dp

(−ph′(p))
= lim

p→∞

h′(p)

−h′(p)− ph′′(p)
= lim

p→∞

1

ι(p)− 1
=

1

µ̄− 1
.

Therefore, by L’Hospital’s rule, limp→∞
h(p)
−ph′(p) = 1

µ̄−1
, and limp→∞ ρ(p) = µ̄

µ̄−1
.

II.2 About the (Log)-Supermodularity of Payoff Functions

Fix a pricing game ((hj)j∈N , H
0,F , (cj)j∈N ) satisfying Assumption 1, and let f ∈ F such that

|f | ≥ 2. Fix a vector of prices for firm f ’s rivals (pj)j∈N\f , and let H0′ =
∑

j /∈f hj(pj) +H0.

We introduce the following notation: νi(pi) = pi−ci
pi

ιi(pi) for every i and pi > 0.

We first show that Πf is neither supermodular nor submodular in (pj)j∈f . Let i 6= k in f .

∂2Πf

∂pi∂pk
=

∂

∂pk

(
−h′i(pi)
H

(
1− νi(pi) + Πf (p)

))
,

= −h′i
(
−h′k
H2

(1− νi + Πf ) +
1

H

−h′k
H

(
1− νk + Πf

))
,

=
h′ih
′
k

H2

(
(1− νi + Πf ) + (1− νk + Πf )

)
, (iv)

where we have used the expression of marginal profit derived in equation (13).

Assume in addition that firm f ’s profile of prices satisfies the constant ι-markup property.
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Then, equation (iv) can be simplified as follows (see the end of the proof of Lemma F):

∂2Πf

∂pi∂pk
=

2h′ih
′
k

H2

(
1− µf +

1

H
µf
∑
j∈f

γj(rj(µ
f ))

)
,

= −2h′ih
′
k

H3

(
(µf − 1)

(
H0′ +

∑
j∈f

hj(rj(µ
f ))

)
− µf

∑
j∈f

γj(rj(µ
f ))

)
︸ ︷︷ ︸

≡φ(µf )

.

We have shown in the proof of Lemma G that φ(µf ) is strictly positive when µf is large, and

strictly negative when µf is small. It follows that Πf is neither supermodular nor submodular

in (pj)j∈f .

Next, we show that Πf is neither log-supermodular nor log-submodular in (pj)j∈f . Let

i 6= k in f .

∂2 log Πf

∂pi∂pk
=

∂

∂pk

(
−h′i − (pi − ci)h′′i∑
j∈f (pj − cj)(−h′j)

+
−h′i
H

)
,

= −(−h′i − (pi − ci)h′′i ) (−h′k − (pk − ck)h′′k)(∑
j∈f (pj − cj)(−h′j)

)2 +
h′ih
′
k

H2
,

=
h′ih
′
k

H2

(
1− (νi − 1)(νk − 1)

(Πf )2

)
.

Again, if firm f ’s profile of prices has the constant ι-markup property, then

∂2Πf

∂pi∂pk
=
h′ih
′
k

H2

(
1−

(
µf − 1

Πf

)2
)
.

Note that
µf − 1

Πf
= 1 +

φ(µf )

µf
∑

j∈f γj(rj(µ
f ))

.

Let µf∗ be the unique solution of equation φ(µf ) = 0. Then, by continuity, for µf close enough

to µf∗ and strictly below µf∗, (µf − 1)/Πf ∈ (0, 1), and, therefore, ∂2Πf/∂pi∂pk > 0. For µf

close enough to µf∗ and strictly above µf∗, (µf−1)/Πf > 1, and, therefore, ∂2Πf/∂pi∂pk < 0.

Therefore, Πf is neither log-supermodular nor log-submodular in (pj)j∈f .

II.3 About Infinite Prices

We first argue that the idea that product k is simply not supplied when pk = ∞ is con-

sistent with the discrete/continuous choice interpretation of the demand system. In the

discrete/continuous choice model, a consumer receives a type-1 extreme value draw εk for
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product k even when pk = ∞. Three cases can arise when the price is infinite: (i) The

conditional demand is positive (limpk→∞−h′k(pk)/hk(pk) > 0), in which case the choice pro-

bability must be equal to zero (limpk→∞ hk(pk) = 0). (ii) The choice probability is posi-

tive (limpk→∞ hk(pk) > 0), in which case the conditional demand must be equal to zero

(limpk→∞−h′k(pk)/hk(pk) = 0). (iii) Both the conditional demand and the choice probability

are equal to zero.5 In all three cases, the consumer does not consume a positive quantity

of the good when the price is infinite, which is consistent with the interpretation that the

product is simply not available.

An alternative way of allowing for infinite prices would be to define the profit function

for finite prices first, and then extend it by continuity to price vectors that have infinite

components. In the proof of Lemma C in the paper, we show that, if the price vector

p̂ ∈ (0,∞]N has a least one finite component, then limp→p̂ Πf (p) coincides with the value

of Πf (p̂) defined in equation (2). There is, however, an important exception. If pj = ∞
for every j, then limp→p̂ Πf (p) does not necessarily exist. For instance, with CES or MNL

demands, firms’ profits do not have a limit when all prices go to infinity.

III About Assumption 1

In this section, we formalize and prove our statement that Assumption 1 is the weakest

assumption under which an approach based on first-order conditions is valid. We also show

how to prove equilibrium existence without Assumption 1.

III.1 Definitions and Statement of the Theorem

In the following, we denote by H the set of C3, strictly decreasing and log-convex functions

from R++ to R++. Hι is the set of functions in H that satisfy Assumption 1.

We first define a multiproduct firm as a collection of products, along with a constant unit

cost for each product:

Definition 1. A multiproduct firm is a pair ((hj)j∈N , (cj)j∈N ), where N = {1, . . . , n} is a

finite and non-empty set, and for every j ∈ N , hj ∈ H, and cj > 0. The profit function

associated with multi-product firm M is:

Π (M)
(
p,H0

)
=
∑
k∈N

(pk − ck)
−h′k(pk)∑

j∈N hj(pj) +H0
, ∀p ∈ RN++, ∀H0 > 0.

5To see this, suppose that limp→∞−h′(p)/h(p) = l > 0 (the limit exists, since h is log-convex), where we
have dropped the product subscript to ease notation. There exists p0 > 0 such that −h′(p)/h(p) > l/2 for all

p ≥ p0. Integrating this inequality, we see that − log
(
h(p)
h(p0)

)
> l

2 (p− p0) for all p > p0. Taking exponentials

on both side, and letting p go to infinity, we obtain that limp→∞ h(p) = 0. Conversely, limp→∞ h(p) > 0
implies that limp→∞−h′(p)/h(p) = 0.
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As in the paper, H0 represents the value of the outside option. Our goal is to derive

conditions under which the profit function Π(M)(·, H0) is well-behaved.

In the following, it will be useful to study multiproduct firms that can be constructed

from a set of products (i.e., a set of indirect subutility functions) smaller than H:

Definition 2. The set of multiproduct firms that can be constructed from the set H′ ⊆ H is:

M (H′) =
⋃

n∈N++

(
H′n × Rn

++

)
.

We can now define well-behaved multiproduct firms and well-behaved sets of products:

Definition 3. We say that multiproduct firm M ∈ M (H) is well-behaved if for every

(p,H0) ∈ Rn+1
++ , ∇pΠ (M) (p,H0) = 0 implies that p is a local maximizer of Π (M) (., H0).

We say that the product set H′ ⊆ H is well-behaved if every M ∈M (H′) is well-behaved.

Put differently, a set of products is well-behaved if for every multiproduct firm that can be

constructed from this set, for every value the outside optionH0 can take, first-order conditions

are sufficient for local optimality. In the following, we look for the “largest” well-behaved set

of products, where the meaning of “large” will be made more precise shortly.

We define the set of CES products as follows:

HCES =
{
h ∈ H : ∃(a, σ) ∈ R++ × (1,∞) s.t. ∀p > 0, h(p) = ap1−σ} .

We have shown in the paper that HCES ⊆ Hι.

We are now in a position to state our theorem:

Theorem I. Hι is the largest (in the sense of set inclusion) set H′ ⊆ H such that HCES ⊆ H′
and H′ is well-behaved.

In words, Hι is the largest set of products that contains CES products and that is well-

behaved. Rephrasing this result in terms of pricing games, this means that pricing games

based on sets of products larger than Hι are not well-behaved, and that an aggregative games

approach based on first-order conditions is not valid.

III.2 Proof of Theorem I

We first make the dependence of the function νk (which maps prices into ι-markups) on the

marginal cost ck explicit by writing νk(pk, ck) ≡ pk−ck
pk

ιk(pk). Note that

∂νk
∂pk

=
ck
p2
k

ιk(pk) +
pk − ck
pk

ι′k(pk). (v)
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In addition, since ιk(pk) = pk
−h′k(pk)

γk(pk)
, we also have that

∂νk
∂pk

=
(νk(pk, ck)− 1)h′k(pk)− νk(pk, ck)γ′k(pk)

γk(pk)
. (vi)

Differentiating the monopolist’s profit with respect to pk, we obtain:

∂Π (M)

∂pk
=
−h′k(pk)

H

(
1− pk − ck

pk
pk
−h′′k(pk)
−h′k(pk)

+
∑
j∈N

(pj − cj)
−h′j(pj)
H

)
,

=
−h′k(pk)

H

(
1− νk(pk, ck) +

∑
j∈N

νj(pj, cj)
γj(pj)

H

)
, (vii)

where H =
∑

j∈N hj(pj) +H0. Therefore, if the first-order conditions hold at price vector p,

then, for every k in N ,

νk(pk, ck) = 1 +
∑
j∈N

νj(pj, cj)
γj(pj)

H
. (viii)

Since the right-hand side of the above equation does not depend on the identity of product

k, it follows that p satisfies the common-ι markup property:

ν(pi, ci) = ν(pj, cj), ∀i, j ∈ N .

This allows us to rewrite the first-order condition for product k as follows:

νk(pk, ck)

(
1−

∑
j∈N

γj(pj)

H

)
= 1. (ix)

Since we are interested in the sufficiency of first-order conditions for local optimality, we

need to calculate the Hessian of the monopolist’s profit function. This is done in the following

lemma:

Lemma III. Let M ∈M (H), p >> 0 and H0 > 0. If ∇pΠ(M) (p,H0) = 0, then the Hessian

of Π(M) (., H0), evaluated at price vector p, is diagonal, with typical diagonal element

h′k(pk)

H0 +
∑

j∈N hj(pj)

∂νk
∂pk

(pk, ck).

Proof. Let M =
(

(hj)j∈N , (cj)j∈N

)
∈ M (H). Let p >> 0 and H0 > 0, and suppose that

∇pΠ(M)(p,H0) = 0. For every 1 ≤ k ≤ n,

∂2Π(M)

∂p2
k

=
−h′k
H

(
−∂νk
∂pk

+
1

H

(
∂νk
∂pk

γk + νkγ
′
k − νk

∑
j∈N γj

H
h′k

))
,
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=
−h′k
H

(
−∂νk
∂pk

+
1

H

(
∂νk
∂pk

γk + νkγ
′
k − (νk − 1)h′k

))
,

=
−h′k
H

(
−∂νk
∂pk

+
1

H

(
∂νk
∂pk

γk −
∂νk
∂pk

γk

))
,

=
h′k
H

∂νk
∂pk

.

where the first line follows from differentiating equation (vii) with respect to pk and using

the fact that ∂Π(M)/∂pk = 0, the second line follows from equation (ix), and the third line

follows from equation (vi). Using the same method, we find that all the off-diagonal elements

of the Hessian matrix are equal to zero, which proves the lemma.

The following lemma is an immediate consequence of Lemma III and equation (v):

Lemma IV. The set Hι is well-behaved.

Proof. Let M =
(

(hj)j∈N , (cj)j∈N

)
∈ M (H). Let p >> 0 and H0 > 0, and suppose

that ∇pΠ(M)(p,H0) = 0. Then, by equation (ix), and by log-convexity of hj for every j,

νk(pk, ck) > 1 for every 1 ≤ k ≤ n. It follows that ιk(pk) > 1 and pk > ck for every k.

Therefore, by equation (v) and since hk ∈ Hι, ∂νk/∂pk > 0. By Lemma III, the Hessian of

Π(M)(., H0) evaluated at price vector p is therefore negative definite. Therefore, the local

second-order conditions hold, p is a local maximizer of Π(M)(., H0), M is well-behaved, and

Hι is well-behaved.

The next step is to rule out products that are not in Hι. This is done in the following

lemma:

Lemma V. Let h ∈ H\Hι. Then, HCES ∪ {h} is not well-behaved.

Proof. Since h /∈ Hι, there exists p̂ > 0 such that ι(p̂) > 1 and ι′(p̂) < 0. Our goal is to

construct a two-product firm M = ((h1, h2), (c1, c2)), a price vector (p1, p2) ∈ R2
++ and an

H0 > 0 such that ∇pΠ (M) ((p1, p2), H0) = 0 and ∂ν1

∂p1
(p1, c1) < 0. We begin by setting h1 = h

and p1 = p̂. We will tweak h2, p2, c1, c2 and H0 along the way.

Since ι′1(p1) < 0, equation (v) implies that there exists c̄ ∈ (0, p1) such that ∂ν1

∂p1
(p1, c1) < 0

whenever c1 < c̄.

For every s ∈ (1, ι1(p1)), there exists a unique C1(s) ∈ (0, p1) such that

p1 − C1(s)

p1

ι1(p1)

s
= 1. (x)

C1(·) is continuous and lims→ι1(p1) C1(s) = 0. In particular, there exists s ∈ (1, ι1(p1)) such

that C1(s) ∈ (0, c̄) whenever s ∈ (s, ι1(p1)). It follows that, when s ∈ (s, ι1(p1)), condition (x)

holds and ∂ν1

∂p1
(p1, C1(s)) < 0.

Let σ ∈ (s, ι1(p1)), and h2(p2) = p1−σ
2 for all p2 > 0. Recall that ι2(p2) = σ and

γ2(p2) = σ−1
σ
h2(p2) for all p2 > 0.
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For every H0 > 0, define the following function:

φ(x) = 1−
γ1(p1) + σ−1

σ
x

h1(p1) + x+H0
, ∀x > 0.

Notice that limx→∞ φ(x) = 1
σ
. Moreover,

φ′(x) =
γ1(p1)− σ−1

σ
(h1(p1) +H0)

(h1(p1) + x+H0)2 .

Choose some H0 such that γ1(p1) − σ−1
σ

(h1(p1) +H0) < 0. Then, φ′(x) < 0 for all x > 0.

Therefore, φ(x) > 1
σ

for all x > 0.

Let (p2, c2) ∈ R2
++. The first-order condition for product 2 can be written as follows:

p2 − c2

p2

σ

(
1− γ1(p1) + γ2(p2)

h1(p1) + h2(p2) +H0

)
= 1,

or, equivalently,
p2 − c2

p2

× σφ
(
p1−σ

2

)︸ ︷︷ ︸
>1, since φ(x)>1/σ

= 1.

Therefore, for every p2 > 0, there exists a unique C2(p2) ∈ (0, p2) such that the first-order

condition for product 2 holds.

The first-order condition for product 1 can be written as follows:

p1 − c1

p1

ι1(p1)

φ
(
p1−σ

2

)−1 = 1.

Since φ
(
p1−σ

2

)−1 −→
p2→0+

σ and σ ∈ (s, ι1(p1)), there exists P2 > 0 such that φ
(
P 1−σ

2

)−1 ∈

(s, ι1(p1)). Put c1 = C1

(
φ
(
P 1−σ

2

)−1
)

. Then, the first-order condition for product 1 holds,

c1 ∈ (0, c̄), and therefore, ∂ν1

∂p1
(p1, c1) < 0.

To summarize, we have constructed a multi-product firm M = ((h1, h2), (c1, c2)) with

h1 = h, h2(x) = x1−σ, c1 = C1

(
φ
(
P 1−σ

2

)−1
)

and c2 = C2(P2), an H0 > 0 and a price vector

(p1, p2) = (p̂, P2) such that ∇pΠ(M) ((p1, p2), H0) = 0 and ∂ν1

∂p1
(p1, c1) < 0. By Lemma III,

the Hessian matrix of Π(M)(·, H0) evaluated at price vector (p1, p2) has a strictly positive

eigenvalue. Therefore, (p1, p2) is not a local maximizer of Π(M)(·, H0), and multi-product

firm M is not well-behaved. It follows that HCES ∪ {h} is not well-behaved.

Combining Lemmas IV and V proves Theorem I.
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III.3 A Remark on Single-Product Firms

We now argue that multiproduct-firms are special, in the sense that, compared to single-

product firms, they require strictly stronger restrictions on the set of admissible products to

be well-behaved. This statement is formalized in the following proposition:

Proposition II. Let h ∈ H, c > 0 and M = (h, c). The following assertions are equivalent:

(i) Firm M is well-behaved.

(ii) For every p > 0 such that ι(p) > 1, ι′(p) ≥ 0 or ρ′(p) ≥ 0.6

Proof. Let h ∈ H, c > 0 and M = (h, c). With single-product firms, first-order condition (ix)

can be simplified as follows:

ν

(
1− γ

h+H0

)
= 1. (xi)

By Lemma III, ∂2Π(M)/∂p2 has the same sign as ∂ν/∂p whenever condition (xi) holds.

Assume that (ii) holds. We want to show that, for every (p, c,H0) ∈ R3
++, ∂ν(p, c)/∂p > 0

whenever condition (xi) holds. Let p > 0. If ι(p) ≤ 1, then for every c,H0 > 0,

ν

(
1− γ

h+H0

)
< 1,

so there is nothing to prove. Next, assume that ι(p) > 1. For every c > 0, ∂ν/∂p is given by

equation (v). If ι′(p) ≥ 0, then ∂ν(p, c)/∂p > 0 for every H0 > 0 and 0 < c ≤ p. In particular,

∂ν(p, c)/∂p > 0 when condition (xi) holds. (Recall that, by log-convexity, γ < h+H0.)

Assume instead that ι′(p) < 0. Then, since (ii) holds, ρ′(p) ≥ 0. Notice that

ρ′

ρ
=

(
log

(
hι

p(−h′)

))′
=
h′

h
+
ι′

ι
− 1

p
+

h′′

−h′
.

It follows that

p
ρ′

ρ
= p

ι′

ι
− p−h

′

h
− 1 + ι = p

ι′

ι
− ι

ρ
− 1 + ι = p

ι′

ι
+ ι

(
1− 1

ρ

)
− 1.

Since ι′ < 0 and ρ′ ≥ 0, it follows that ι
(

1− 1
ρ

)
− 1 > 0.

Since ι(p) > 1, we have that, for every H0 > 0, there exists a unique c (H0) such that

condition (xi) holds. This c (H0) is given by:

c
(
H0
)

= p

(
1− 1

ι
(
1− γ

h+H0

)) . (xii)

6Recall that ρ = h/γ.
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Since ι
(

1− 1
ρ

)
− 1 > 0, c (H0) ∈ (0, p) for every H0 > 0. Notice also that c′ (H0) > 0. All

we need to do now is check that

∂ν

∂p

(
p, c
(
H0
))

=
c (H0)

p2
ι+

p− c (H0)

p
ι′

is strictly positive for every H0 > 0. Since the right-hand side is strictly increasing in c (H0)

and c′ (H0) > 0, this boils down to checking that ∂ν (p, c(0)) /∂p ≥ 0:

∂ν

∂p
(p, c(0)) =

ι

p

(
c(0)

p
ι+

p− c(0)

p
p
ι′

ι

)
,

=
ι

p

1− 1

ι
(

1− 1
ρ

)
+

1

ι
(

1− 1
ρ

)pι′
ι

 ,

=
1

p
(

1− 1
ρ

) (ι(1− 1

ρ

)
− 1 + p

ι′

ι

)
,

=
ρ′

ρ− 1
,

which is indeed non-negative. Therefore, (i) holds.

Conversely, suppose that (ii) does not hold. There exists p > 0 such that ι(p) > 1, ι′(p) < 0

and ρ′(p) < 0. We distinguish two cases. Assume first that ι
(

1− 1
ρ

)
− 1 ≥ 0. Then, the

c (H0) defined in equation (xii) satisfies c(H0) ∈ (0, p) and

p− c (H0)

p
ι

(
1− γ

h+H0

)
= 1

for every H0 > 0. In addition, as proven above,

∂ν

∂p
(p, c(0)) =

ρ′

ρ− 1
< 0.

By continuity, there exists ε > 0 such that ∂ν
∂p

(p, c(ε)) < 0. It follows that ∂Π(M)
∂p

(p, ε) = 0

and ∂2Π(M)
∂p2 (p, ε) > 0. Therefore, M is not well-behaved.

Next, assume that ι
(

1− 1
ρ

)
− 1 < 0. Then, there exists H0 > 0 such that c (H0) = 0.

Notice that ∂ν
∂p

(p, 0) = ι′(p) < 0. Therefore, by continuity of ∂ν/∂p and c(.), for ε > 0 small

enough,
∂ν

∂p

(
p, c
(
H0 + ε

))
< 0,

and c (H0 + ε) > 0. Therefore, multiproduct firm (h, c (H0 + ε)) is not well-behaved.
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III.4 Equilibrium Existence without Assumption 1

Assumption 1 can be relaxed if we follow instead a potential games approach (Slade, 1994;

Monderer and Shapley, 1996). In Nocke and Schutz (2017a), we show that the function

P (p) =

∏
f∈F

∑
j∈f (pj − cj)(−h′j(pj))∑
j∈N hj(pj) +H0

is an ordinal potential for our pricing game. The idea is that, starting from a profile of

prices, if firm f deviates, then firm f ’s profit increases if and only if the value of the potential

function increases. Without putting any restrictions on the demand system ((hj)j∈N , H
0)

(except that the h functions are positive, C1, strictly decreasing and log-convex), we show

that the function P has a global maximizer. This implies that the pricing game has an

equilibrium.

While this more general existence result is useful, the downside of the potential games

approach is that it does not allow us to completely characterize the set of equilibria. This

implies in particular that we cannot extend the comparative statics and characterization

results derived in Section 3.3

IV Choke Price

In this section, we show how to extend the analysis to the case where (some of the) products

have a choke price.

Demand. The demand for product i is still given by Di(p) = −h′i(pi)/H(p), but we now

assume that h′i(pi) = 0 whenever pi exceeds some choke price pi ∈ (0,∞]. (Note that, if

pi = ∞ for every product i, then we have the baseline model studied in the paper.) More

precisely, assume that, for every i, there exists pi ∈ (0,∞] such that hi is strictly positive,

log-convex, and C1 on R++, constant on (pi,∞), and C3 and strictly decreasing on (0, pi).

These assumptions imply that hi continues to be the exponential of an indirect subutility

function. Hence, the demand system ((hj)j∈N , H
0) can still be given discrete/continuous

choice foundations. Moreover, consumer surplus is still given by logH(p).

The following function hi satisfies the assumptions made above:

hi(pi) =

exp
(
aipi − 1

2
bip

2
i

)
if pi ≤ pi = ai

bi
,

exp
(
a2
i

2bi

)
otherwise.

(xiii)

Note that the conditional demand for product i is linear up to the choke price: −h′i(pi)/hi(pi) =

ai − bipi.
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The pricing game. A pricing game is still a tuple ((hj)j∈N , H
0,F , (cj)j∈N ). The profit of

firm f ∈ F is now defined as follows:

Πf (p) =
∑
j∈f
pj<pj

(pj − cj)
−h′j(pj)∑

k∈N hk(pk) +H0
, ∀p ∈ (0,∞]N .

Let p be a price vector such that pj ≥ pj for every j in some subset of products N ′. Note

that setting the prices of all the products in N ′ equal to the corresponding choke prices

while leaving the prices of the other products unchanged affects neither the firms’ profits nor

consumer surplus. We can therefore restrict the strategy space to
∏

j∈N (0, pj].

For every pi ∈ (0, pi), let ιi(pi) = pih
′′
i (pi)/(−h′i(pi)) be the price elasticity of demand for

product i under monopolistic competition. The following assumption plays the same role as

in the paper:

Assumption i. For every pi ∈ (0, pi), ι′i(pi) ≥ 0 whenever ιi(pi) > 1.

It is easily checked that the function hi defined in equation (xiii) satisfies this assumption,

as long as ai and bi are not too different.

Equilibrium analysis. The equilibrium characterization and the proof of equilibrium ex-

istence follow the analysis in Sections 3.1, 3.2, and the Appendix very closely.

Note first that, since products are substitutes, pricing below cost is always strictly subop-

timal. Hence, if product i is such that pi ≤ ci, then firm i optimally sets pi = pi. We

can therefore remove product i from the set of products, redefine H0 as H0 + hi(pi), and

obtain a pricing game that is formally equivalent to the original one. Having done that for

every product for which the production cost exceeds the choke price, we obtain a new set

of products N , a new set of firms F , and a new value for the outside option H0, such that

pj > cj for every j ∈ N . We study this modified pricing game in the following.

It is straightforward to show that each firm sets at least one price below the choke price in

any equilibrium (Lemma B). Since pricing below cost is strictly suboptimal, we can restrict

the strategy space to
∏

j∈N [cj, pj]. The continuity and compactness argument used in the

proof of Lemma C therefore still goes through, implying that, holding the prices of firm f ’s

rivals fixed, firm f ’s profit maximization problem has a solution.

The definition of generalized first-order conditions has to be modified to account for the

fact that some of the choke prices may be finite. As in the paper, let Gf ((pj)j∈f , H
0′) be the

profit of firm f when it chooses the profile of prices (pj)j∈f and its rivals’ contribution to the

aggregator is H0′.
(
pk, (pj)j∈f\{k}

)
denotes the price vector with k-th component pk, and

with other components given by (pj)j∈f\{k}. We say that the generalized first-order conditions

of the maximization problem maxGf (·, H0′) hold at price vector (p̃j)j∈f ∈
∏

j∈f [cj, pj] if for

every k ∈ f ,

(a) ∂Gf

∂pk
((p̃j)j∈f , H

0′) = 0 whenever p̃k < pk, and
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(b) Gf ((p̃j)j∈f , H
0′) ≥ Gf

((
pk, (p̃j)j∈f\{k}

)
, H0′

)
for every pk < pk whenever p̃k = pk.

Generalized first-order conditions are clearly necessary for optimality (Lemma D).

We now extend the definition of the pricing function rj to the case of finite choke prices

(Lemma E). Let νj(pj) =
pj−cj
pj

ιj(pj). The argument in the proof of Lemma A can be easily

extended to show that, for every j, there exists p
j
∈ (0, pj) such that ιj(pj) > 1 if and only if

pj ∈ (p
j
, pj). Next, we show that pmcj , the price of product j under monopolistic competition,

which solves the equation νj(pj) = 1 on interval (0, pj), is well defined when the choke price

is finite. Assume first that the equation has no solution. Since νj(pj) < 1 for pj sufficiently

close to cj, the continuity of ιj implies that νj(pj) < 1 for every pj ∈ (0, pj). It follows

that (pj − cj)(−h′j(pj)) is strictly increasing on (0, pj). The fact that (pj − cj)(−h′j(pj)) = 0

gives us a contradiction. Next, note that, by definition of p
j
, any solution to the equation

νj(pj) = 1 has to belong to the interval (p
j
, pj). Since νj(·) is strictly increasing on that

interval, it follows that the solution is unique.

We can now extend Lemma E: νj is a strictly increasing C1-diffeomorphism from (pmcj , pj)

to (1, µ̄j), where µ̄j ≡ limpj→p−j
νj(pj) > 1. The corresponding inverse function, rj, is therefore

strictly increasing from (1, µ̄j) to (pmcj , pj). The derivative of rj is still given by equation (11).

As in the paper, we extend the functions νk and rk by continuity as follows: νk(pk) = µ̄k,

rk(1) = pmck , and rk(µ
f ) = pk for every µf ≥ µ̄k. We also extend γk by continuity at pk:

γk(∞) = 0.7

Having extended the definition of pricing functions to accommodate finite choke prices, we

can define the common ι-markup property. A profile of prices (pj)j∈f ∈
∏

j∈f [cj, pj] satisfies

that property if there exists µf ∈ (1, µ̄f ) (where µ̄f = maxj∈f µ̄j) such that pj = rj(µ
f ) for

every j ∈ f . The argument in the proof of Lemma F continues to apply, implying that, if

a profile of prices (pj)j∈f solves firm f ’s profit maximization problem, then it must satisfy

the common ι-markup property, and the corresponding ι-markup must solve equation (12).

The argument used in the proof of Lemma G (recall that γj(pj) = 0 for every j) implies that

that equation has a unique solution. This allows us to generalize Lemma H, and to conclude

our study of firm f ’s profit maximization problem: The generalized first-order conditions

are necessary and sufficient for global optimality, and the optimal ι-markup is the unique

solution of equation (12).

Having shown that first-order conditions are sufficient for global optimality, we can use

an aggregative games approach to prove equilibrium existence and characterize the set of

equilibria. The monotonicity of γj and rj and the fact that γj(pj) = 0 for every j im-

ply that equation (14) has a unique solution (Lemma I). Therefore, the fitting-in function

mf (H) is well defined, continuous, strictly decreasing, and satisfies limH→0m
f (H) = µ̄f and

7We already know form Lemma A that limpk→pk γk(pk) = 0 if pk =∞. Suppose pk <∞. Then,

lim
pk→pk

γk(pk) = lim
pk→pk

pk
−h′k(pk)

ιk(pk)
= lim
pk→pk

pk︸ ︷︷ ︸
<∞

× lim
pk→pk

−h′k(pk)︸ ︷︷ ︸
=0

× lim
pk→pk

1

ιk(pk)︸ ︷︷ ︸
<∞

= 0.
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limH→∞m
f (H) = 1. The equilibrium existence and characterization problem therefore boils

down to identifying the set of H’s such that Ω(H) = 1, where

Ω(H) ≡ H0

H
+

1

H

∑
f∈F

∑
j∈f

hj(rj(m
f (H)))

is the aggregate share function.

If all the products have infinite choke prices, then we already know from Lemma J that

equation Ω(H) = 1 has a solution. Suppose that pj <∞. Then,

Ω(H) ≥
H0 + hj(pj)

H
−→
H→0
∞.

The fact that Ω(H) −→
H→∞

0 (as shown in the proof of Lemma J) and the continuity of Ω allow

us to conclude that equation Ω(H) = 1 has a solution.

Therefore, Theorem 1 extends to the case of finite choke prices. The set of equilibrium

aggregator levels is still the set of fixed points of the aggregate fitting-in function. For a

given equilibrium aggregator level H∗, firm f sets a ι-markup of µf∗ = mf (H∗), and earns

a profit of µf∗ − 1. Product j ∈ f is priced at rj(µ
f∗). The fact that fitting-in functions

and pricing functions have the same monotonicity properties as in the paper implies that the

comparative statics results derived in Section 3.3 continue to hold. In particular, a shock

that makes the industry more competitive (say, higher H0) induces firms to lower their prices

and broaden their scope in the highest and lowest equilibrium.

V Equilibrium Uniqueness

V.1 Main Results

Fix a pricing game ((hj)j∈N , H
0,F , (cj)j∈N ) satisfying Assumption 1. We now study equili-

brium uniqueness by deriving conditions under which the function Ω(H) = Γ(H)/H is strictly

decreasing in H.8 We recall the following notation: For all j ∈ N , γj = h′2j /h
′′
j , ρj ≡ hj/γj,

and p
j

= inf{pj > 0 : ιj(pj) > 1}. For every j ∈ N and pj > p
j
, let θj(pj) = h′j(pj)/γ

′
j(pj).

We can now state our uniqueness theorem:

Theorem II. Let ((hj)j∈N , H
0,F , (cj)j∈N ) be a pricing game satisfying Assumption 1. Sup-

pose that, for every firm f ∈ F , at least one of the following conditions holds:

(a) minj∈f infpj>pj ρj(pj) ≥ maxj∈f suppj>pj
θj(pj).

8Another possibility would be to follow an index approach and compute the sign of the determinant of
the Jacobian of the first-order conditions map. In Section V.5, we show that this approach delivers the same
uniqueness conditions.
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(b) µ̄f ≤ µ∗(' 2.78), and for every j ∈ f , µ̄j = µ̄f , lim∞ hj = 0 and ρj is non-decreasing

on (p
j
,∞).9

(c) There exist a function hf , a marginal cost level cf > 0, and a collection of quality

shifters (aj)j∈f ∈ Rf
++ such that hj = ajh

f and cj = cf for all j ∈ f . In addition, ρf is

non-decreasing on (p,∞).

Then, the pricing game has a unique equilibrium.

Proof. See Section V.2.

As already mentioned in the paper, the condition that ρj is non-decreasing is equivalent

to the reciprocal of the demand function pj ∈ (p
j
,∞) 7→ D̂j(pj, hj(pj) + H0) being convex

for every H0 > 0.10 This convexity condition guarantees equilibrium uniqueness, provided

that some additional restrictions, contained in conditions (a), (b) and (c), are satisfied. Note

that condition (a) is indeed a stronger version of the assumption that ρj is non-decreasing.

This is because ρj is non-decreasing on (p
j
,∞) if and only if ρj ≥ θj on the same interval.11

Condition (a) imposes that the highest possible value of θj (j ∈ f) be smaller than the lowest

possible value of ρj (j ∈ f), which is indeed stronger.

In Section VI.2, we provide examples of functional forms that satisfy (or do not satisfy)

our uniqueness conditions. There, we also develop a cookbook for applied work.

Some pricing games satisfy none of our uniqueness conditions. In such cases, it is still

possible to establish equilibrium uniqueness, provided that the firms are sufficiently inefficient

and/or consumers have access to a sufficiently attractive outside option:

Proposition III. Suppose that (hj)j∈N satisfies Assumption 1, and let F be a firm partition.

Then,

• For every H0 > 0, there exists c > 0 such that the pricing game ((hj)j∈N , H
0,F , (cj)j∈N )

has a unique equilibrium whenever (cj)j∈N ∈ [c,∞)N and H0 ≥ H0.

• For every c > 0, there exists H0 ≥ 0 such that the pricing game ((hj)j∈N , H
0,F , (cj)j∈N )

has a unique equilibrium whenever (cj)j∈N ∈ [c,∞)N and H0 ≥ H0.

Proof. See Section V.4.

9Condition limpj→∞ hj(pj) = 0 can be weakened. See Propositions IV and V, and Corollaries II and III
in Section V.3.

10To see this, note that

d2

dp2j

1

D̂j

= −

(
hj +H0

h′j

)′′
= −

(
h′2j − h′′j (hj +H0)

h′2j

)′
=

(
ρj +

H0

γj

)′
= ρ′j −H0

γ′j
γj
.

Since γ′j < 0 (see Lemma A), the above expression is non-negative for every H0 if and only if ρ′j ≥ 0.
11To see this, note that (log ρj)

′ =
−γ′

j

hj
(ρj − θj), and that γ′j < 0 by Lemma A.
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Intuitively, when the products in N are relatively unattractive compared to the outside

option (either because marginal costs are high, or because the outside option delivers high

consumer surplus), the firms have low market shares, and, hence, little market power. The

firms therefore set ι-markups close to those they would set under monopolistic competition,

and react relatively little to changes in their rivals’ behavior.

V.2 Proof of Theorem II

V.2.1 Preliminaries

The following lemma allows us to study the equilibrium uniqueness problem on a firm-by-firm

basis:

Lemma VI. Let ((hj)j∈N , H
0,F , (cj)j∈N ) be a pricing game satisfying Assumption 1. Sup-

pose that, for every f ∈ F , the function

sf : µf ∈ (1, µ̄f ) 7→ µf − 1

µf

∑
j∈f hj(rj(µ

f ))∑
j∈f γj(rj(µ

f ))

is strictly increasing in µf . Then, the pricing game ((hj)j∈N , H
0,F , (cj)j∈N ) has a unique

equilibrium.

Proof. A sufficient condition for the pricing game to have a unique equilibrium is that the

function Ω is strictly decreasing. Recall that

Ω(H) =
H0

H
+
∑
f∈F

∑
j∈f hj

(
rj(m

f (H))
)

H
,

=
H0

H
+
∑
f∈F

mf (H)− 1

mf (H)

∑
j∈f hj

(
rj(m

f (H))
)∑

j∈f γj (rj(mf (H)))
,

=
H0

H
+
∑
f∈F

sf
(
mf (H)

)
,

where the second line follows by equation (14) in the paper. Combining this with the fact

that mf is strictly decreasing for every f (see Lemma I in the paper) proves the lemma.

All we need to do now is show that, if condition (a), (b) or (c) in Theorem II holds for

firm f , then sf is strictly increasing. We do so in Sections V.2.2 and V.2.3.

V.2.2 Sufficiency of Conditions (a) and (c)

We first show that condition (a) is sufficient for sf to be strictly increasing.
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Lemma VII. Suppose condition (a) in Theorem II holds for firm f ∈ F . Then, the function

sf defined in Lemma VI is strictly increasing. Moreover, sf ′(µf ) > 0 for every µf ∈ (1, µ̄f ) \
{µ̄j}j∈f .

Proof. By Lemma E in the paper, sf is continuous on (1, µ̄f ) and C1 on (1, µ̄f ) \ {µ̄j}j∈f .
To show that sf is strictly increasing, it is therefore enough to show that sf ′(µf ) > 0 for

every µf /∈ {µ̄j}j∈f . Fix such a µf . Let f ′ be the set of j′s such that µf > µ̄j. Then, since

γj(∞) = 0 for every j (see Lemma A),

sf (µf ) =
µf − 1

µf

∑
j∈f ′ limpj→∞ hj(pj)∑

j /∈f ′ γj(rj(µ
f ))

+
µf − 1

µf

∑
j /∈f ′ hj(rj(µ

f ))∑
j /∈f ′ γj(rj(µ

f ))
.

Since γj is strictly decreasing and rj is strictly increasing for every j (see Lemmas A and E),

the first term in the above expression is non-decreasing. We now turn our attention to the

second term. Note that(∑
j /∈f ′ hj(rj(µ

f ))∑
j /∈f ′ γj(rj(µ

f ))

)′
=

∑
j,k/∈f ′ r

′
j(h
′
jγk − γ′jhk)(∑

j /∈f ′ γj

)2 ,

=

∑
j,k/∈f ′ γk(−γ′j)r′j(ρk − θj)(∑

j /∈f ′ γj

)2 ,

which is non-negative, since condition (a) holds. (Note that, for every j, rj(µ
f ) > pmcj > p

j
.)

Since (µf − 1)/µf has a strictly positive derivative, it follows that sf ′(µf ) > 0.

Next, we investigate the sufficiency of condition (c):

Lemma VIII. Suppose condition (c) in Theorem II holds for firm f ∈ F . Then, the function

sf defined in Lemma VI is strictly increasing. Moreover, sf ′(µf ) > 0 for every µf ∈ (1, µ̄f ).

Proof. It is straightforward to check that, for every j ∈ f , ιj = ιf and γj = ajγ
f . The fact

that ιj = ιf and cj = cf for every j immediately implies that µ̄j = µ̄f and rj = rf for every

j. Hence, sf can be simplified as follows:

sf (µf ) =
µf − 1

µf

∑
j∈f ajh

f (rf (µf ))∑
j∈f ajγ

f (rf (µf ))
=
µf − 1

µf
ρf (rf (µf )).

Hence, sf ′(µf ) > 0.

V.2.3 Sufficiency of Condition (b)

The goal of this section is to prove the following lemma:

Lemma IX. Suppose condition (b) in Theorem II holds for firm f ∈ F . Then, the function

sf defined in Lemma VI is strictly increasing. Moreover, sf ′(µf ) > 0 for every µf ∈ (1, µ̄f ).
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The proof of Lemma IX proceeds in several steps. We first introduce new notation:

ωf = (µf − 1)/µf , ω̄f = limµf→µ̄f (µ
f − 1)/µf , and, for every j ∈ f and pj > p

j
, χj(pj) =

(ιj(pj)− 1)/ιj(pj). The following lemma is useful to understand our uniqueness conditions:

Lemma X. Suppose Assumption 1 holds for firm f . For every j ∈ f :

• For every pj > p
j
, 1− θj(pj)χj(pj) ≥ 0.

• For every ωf ∈ (0, ω̄f ) and pj > p
j

such that χj(pj) > ωf , 1− ωfθj(pj) > 0.

• For every ωf ∈ (0, ω̄f ) and pj ≥ rj(1/(1− ωf )), 1− ωfθj(pj) > 0.

Proof. Fix some j in f . Since ιj(pj) = pj(−h′j(pj))/γj(pj), we have that, for every pj > p
j
,

ι′j(pj)

ιj(pj)
=

1

pj

(
1− ιj(pj) + pj

−γ′j(pj)
γj(pj)

)
,

=
1

pj

(
1− ιj(pj) +

1

θj(pj)
pj
−h′j(pj)
γj(pj)

)
,

=
ιj(pj)

pjθj(pj)
(1− θj(pj)χj(pj)) ,

which is non-negative by Assumption 1. This proves the first part of the lemma. The

second part follows trivially. To prove the third part, note that pj ≥ rj

(
1

1−ωf

)
implies that

pj−cj
pj

ιj(pj) ≥ 1
1−ωf . Hence, 1

1−χj(pj) = ιj(pj) >
1

1−ωf , and χj(pj) > ωf . The second part can

then be used to obtain the third part.

We now differentiate the function sf to obtain conditions under which it is strictly incre-

asing:

Lemma XI. Suppose that Assumption 1 holds for firm f , and that µ̄j = µ̄f for every j ∈ f .

A sufficient condition for sf to have a strictly positive derivative on (1, µ̄f ) is that

∀ωf ∈ (0, ω̄f ), ∀ (pj)j∈f ∈ Rf
++ s.t. ∀j ∈ f, χj(pj) > ωf ,∑

i,j∈f

γi(pi)γj(pj)

(
ωfθi(pi)

1− ωfρj(pj)
1− ωfθi(pi)

− ρj(pj)
)
< 0.

(xiv)

Proof. Since µ̄j = µ̄f for every j ∈ f , sf is C1 on (1, µ̄f ). For every ωf ∈ (0, ω̄f ), define

s̃f (ωf ) = sf (1/(1 − ωf )), and, for every j ∈ f , r̃j(ω
f ) = rj(1/(1 − ωf )). Clearly, sf ′ > 0 if

and only if s̃f ′ > 0. Note that

s̃f (ωf ) = ωf
∑

j∈f hj(r̃j(ω
f ))∑

j∈f γj(r̃j(ω
f ))

.
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Moreover, by Lemma E, we have that

r̃′j(ω
f ) =

1

(1− ωf )2
r′j

(
1

1− ωf

)
,

=
1

1− ωf
γj(r̃j(ω

f ))

−γ′j(r̃j(ωf ))− ωf (−h′j(r̃j(ωf )))
,

=
1

1− ωf
γj(r̃j(ω

f ))

−γ′j(r̃j(ωf ))
1

1− ωfθj(r̃j(ωf ))
.

We can now compute the elasticity of s̃f :

d log s̃f

d logωf
= 1 +

ωf

1− ωf
∑
j∈f

1

1− ωfθj
γj
−γ′j

(
−γ′j∑
k∈f γk

−
−h′j∑
k∈f hk

)
,

= 1 +
ωf

1− ωf
∑
j∈f

γj
1− ωfθj

(
1∑
k∈f γk

− θj∑
k∈f hk

)
.

This elasticity is strictly positive if and only if

0 <
∑
i,j∈f

(
(1− ωf )γihj + ωf

γi
1− ωfθi

(hj − θiγj)
)
,

=
∑
i,j∈f

γiγj

(
(1− ωf )ρj +

ωf

1− ωfθi
(ρj − θi)

)
,

=
∑
i,j∈f

γiγj

(
ρj − ωfθi

1− ωfρj
1− ωfθi

)
,

where, for every k ∈ f , the functions γk, ρk and θk are evaluated at pk = r̃k(ω
f ), which is

strictly greater than ωf (see the argument at the end of the proof of Lemma X). We can

therefore use condition (xiv) to conclude that s̃f ′(ωf ) > 0.

The following lemma gives us upper and lower bounds on the function ρj (j ∈ f), which

will be useful to prove Lemma IX:

Lemma XII. Suppose that firm f satisfies Assumption 1, and that, for every j ∈ f , ρj
is non-decreasing on (p

j
,∞), limpj→∞ hj(pj) = 0, and µ̄j = µ̄f < ∞. Then, for every

ωf ∈ (0, ω̄f ), k ∈ f , and pk > 0 such that χk(pk) > ωf ,

1− ω̄f

ω̄f
1

1− ωf
≤ ρk(pk) ≤

1

ω̄f
.

Proof. Let k ∈ f and ωf ∈ (0, ω̄f ). By Lemma A-(f), limpk→∞ ρk(pk) = µ̄f

µ̄f−1
= 1

ω̄f
. In

addition, ρk is non-decreasing. Therefore, ρk(pk) ≤ 1
ω̄f

for all pk > p
k
. In particular, this

inequality is also satisfied if pk is such that χk(pk) > ωf .
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In addition, ρk(pk) = ιk(pk)
hk(pk)
−pkh′k(pk)

. Therefore,

d log ρk(pk)

dpk
=
ι′k(pk)

ιk(pk)
+

(
h′k(pk)

hk(pk)
− 1

pk
+

h′′k(pk)

−h′k(pk)

)
,

=
ι′k(pk)

ιk(pk)
+

1

pk

(
− ιk(pk)
ρk(pk)

− 1 + ιk(pk)

)
,

=
ι′k(pk)

ιk(pk)
+

ιk(pk)

pkρk(pk)
(ρk(pk)χk(pk)− 1) ,

≤ ι′k(pk)

ιk(pk)
,

where the last inequality follows from the fact that χk(pk) ≤ ω̄f and ρk(pk) ≤ 1
ω̄f

. Therefore,

for all pk > p
k
,

log

(
1

ω̄fρk(pk)

)
=

∫ ∞
pk

ρ′k(t)

ρk(t)
dt ≤

∫ ∞
pk

ι′k(t)

ιk(t)
dt = log

(
µ̄f

ιk(pk)

)
= log

(
1− χk(pk)

1− ω̄f

)
.

It follows that,

ρk(pk) ≥
1− ω̄f

ω̄f
1

1− χk(pk)
, ∀pk > p

k
.

In particular, if χk(pk) > ωf , then

ρk(pk) ≥
1− ω̄f

ω̄f
1

1− ωf
.

We now study a maximization problem which will be useful to prove Lemma IX:

Lemma XIII. For every ω̄ ∈ (0, 1], for every ω ∈ (0, ω̄), define

φω,ω̄ : (y, z) ∈
[

1− ω̄
ω̄

1

1− ω
,

1

ω̄

]2

7→ ωy
1− ωz
1− ωy

+ ωz
1− ωy
1− ωz

− y − z.

There exists a threshold ω∗ ∈ (0, 1) (ω∗ ' 0.64) such that if ω̄ ≤ ω∗, then φω,ω̄ ≤ 0 for all

ω ∈ (0, ω̄).

Proof. Let ω̄ ∈ (0, 1) and ω ∈ (0, ω̄). Define

M (ω, ω̄) = max
(y,z)∈[ 1−ω̄

ω̄
1

1−ω ,
1
ω̄ ]

2
φω,ω̄(y, z).

Notice that φω,ω̄(y, z) = φω,ω̄(z, y) for every y and z. It follows that

M (ω, ω̄) = max
(y,z)∈[ 1−ω̄

ω̄
1

1−ω ,
1
ω̄ ]

2

y≤z

φω,ω̄(y, z).
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Let 1−ω̄
ω̄

1
1−ω ≤ y ≤ z ≤ 1

ω̄
. Then,

∂φω,ω̄
∂y

=
ω(1− ωz)

(1− ωy)2
− ω2z

1− ωz
− 1,

=
1

1− ωz

(
ω

(
1− ωz
1− ωy

)2

− ω2z − (1− ωz)

)
,

≤ 1

1− ωz
(
ω − ω2z − (1− ωz)

)
, since y ≤ z,

= ω − 1 < 0.

It follows that, for every (y, z) ∈
[

1−ω̄
ω̄

1
1−ω ,

1
ω̄

]2
such that y ≤ z,

φω(y, z) ≤ φω

(
1− ω̄
ω̄

1

1− ω
, z

)
≡ ψω,ω̄(z).

Therefore,

M (ω, ω̄) = max
z∈[ 1−ω̄

ω̄
1

1−ω ,
1
ω̄ ]
ψω,ω̄(z).

Since

ψ′′ω,ω̄(z) =

(
1− ω

1− ω
1− ω̄
ω̄

)
2ω2

(1− ωz)3
> 0,

the function ψω,ω̄(.) is strictly convex. Therefore,

M (ω, ω̄) = max

{
φω,ω̄

(
1− ω̄
ω̄

1

1− ω
,
1− ω̄
ω̄

1

1− ω

)
, φω,ω̄

(
1− ω̄
ω̄

1

1− ω
,

1

ω̄

)}
.

Since φω,ω̄(z, z) = 2(ω − 1)z < 0 for every z, it follows that M (ω, ω̄) ≤ 0 if and only if

ζ(ω, ω̄) ≤ 0, where

ζ(ω, ω̄) ≡ φ

(
1− ω̄
ω̄

1

1− ω
,

1

ω̄

)
,

=
(

1− ω

ω̄

) ω
1−ω

1−ω̄
ω̄

1− ω
1−ω

1−ω̄
ω̄

+
ω

ω̄ − ω

(
1− ω

1− ω
1− ω̄
ω̄

)
− 1− ω̄

ω̄

1

1− ω
− 1

ω̄
,

=
ω(1− ω̄)

ω̄
+

ω

(1− ω)ω̄
− 1− ω̄

ω̄

1

1− ω
− 1

ω̄
,

=
1

1− ω
+
ω − 2

ω̄
− ω.

For every ω ∈ (0, ω̄),
∂ζ

∂ω
=

1

(1− ω)2
+

1

ω̄
− 1 > 0.

Therefore, ζ is strictly increasing in ω on the interval (0, ω̄). It follows that M (ω, ω̄) ≤ 0 for
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every ω ∈ (0, ω̄) if and only if ξ (ω̄) ≤ 0, where

ξ (ω̄) ≡ ζ (ω̄, ω̄) ,

=
1

1− ω̄
+ 1− ω̄ − 2

ω̄
.

For every ω̄ ∈ (0, 1),

ξ′(ω̄) =
1

(1− ω̄)2
+

2

(ω̄)2 − 1 > 0.

Therefore, ξ is strictly increasing on (0, 1). Since limω̄→0+ ξ(ω̄) = −∞ and limω̄→1− ξ(ω̄) =

+∞, there exists a unique threshold ω∗ ∈ (0, 1) such that ξ(ω̄) ≤ 0 if and only if ω̄ ≤ ω∗.

Numerically, we find that ω∗ ' 0.64.

We can now prove Lemma IX:

Proof. Suppose condition (b) holds for firm f . Then, ωf < ω∗. Splitting the sum in two

terms, condition (xiv) in Lemma XI can be rewritten as follows:

∀ωf ∈ (0, ω̄f ), ∀ (pj)j∈f ∈ Rf
++ s.t. ∀j ∈ f, χj(pj) > ωf ,

1

2

∑
i,j∈f
i 6=j

γi(pi)γj(pj)

(
ωfθi(pi)

1− ωfρj(pj)
1− ωfθi(pi)

+ ωfθj(pj)
1− ωfρi(pi)
1− ωfθj(pj)

− ρi(pi)− ρj(pj)
)

+

(∑
i∈f

γi(pi)
2

(
ωfθi(pi)

1− ωfρi(pi)
1− ωfθi(pi)

− ρi(pi)
))

< 0.

(xv)

Let us first show that the second sum in equation (xv) is strictly negative. Let ωf ∈ (0, ω̄f ),

i ∈ f and xi such that χi(pi) > ωf . Then,

ωfθi(pi)
1− ωfρi(pi)
1− ωfθi(pi)

− ρi(pi) ≤ ωfθi(pi)− ρi(pi) < 0,

where we have used the fact that ρi is non-decreasing (θi(pi) ≤ ρi(pi)) and Lemma X (1 −
ωfθi(pi) > 0).

Next, we turn our attention to the first sum in equation (xv). Let ωf ∈ (0, ω̄f ) and (pj)j∈f
such that χj(pj) > ωf for every j ∈ f . By Lemma XII,

∀k ∈ f, ρk(pk) ∈
[

1− ω̄f

ω̄f
1

1− ωf
,

1

ω̄f

]
.

In addition, as shown above, for every k ∈ f , θk(pk) ≤ ρk(pk)
(
< 1

ωf

)
. Therefore,

1

2

∑
i,j∈f
i 6=j

γi(pi)γj(pj)

(
ωfθi(pi)

1− ωfρj(pj)
1− ωfθi(pi)

+ ωfθj(pj)
1− ωfρi(pi)
1− ωfθj(pj)

− ρi(pi)− ρj(pj)
)
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≤ 1

2

∑
i,j∈f
i 6=j

γi(pi)γj(pj)φωf ,ω̄f (ρi(pi), ρj(pj)) ,

≤ 0, by Lemma XIII.

V.3 Condition (b) when limpj→∞ hj(pj) ≥ 0

In this section, we extend condition (b) in Theorem II to cases where limpj→∞ hj(pj) is not

necessarily equal to zero. We start with the following technical lemma:

Lemma XIV. Suppose that Assumption 1 holds for firm f , and that µ̄j = µ̄f and ρj is

non-decreasing on (p
j
,∞) for every j ∈ f . Then, for every k ∈ f ,

Sk =

{
ω ∈ (0, ω̄f ) : ∃pk > p

k
, ω = χk(pk) =

1

ρk(pk)

}
contains at most one element. If Sk is empty, then, either χk(pk)ρk(pk) > 1 for every pk > p

k
,

or χk(pk)ρk(pk) < 1 for every pk > p
k
. If, instead, Sk = {ω̂}, then, for every pk > p

k
,

• θk(pk) ≤ 1
ω̂

, and

• if ρk(pk) <
1
ω̂

, then ρk(pk) ≥ 1−ω̂
ω̂

1
1−χk(pk)

.

Proof. Let k ∈ f , and assume for a contradiction that Sk contains two distinct elements.

There exist pk, p
′
k > p

k
such that χk(pk)ρk(pk) = 1, χk(p

′
k)ρk(p

′
k) = 1 and χk(pk) 6= χk(p

′
k).

To fix ideas, assume χk(p
′
k) > χk(pk). Then, since χk is non-decreasing, p′k > pk. Since ρk

is non-decreasing, ρk(pk) ≤ ρk(p
′
k). Therefore, χk(pk)ρk(pk) < χk(p

′
k)ρk(p

′
k) = 1, which is a

contradiction.

Let κ : pk ∈ (p
k
,∞) 7→ ρk(pk)χk(pk), and notice that κ is continuous and non-decreasing.

If Sk = ∅, then, there is no pk such that κ(pk) = 1. Since κ is continuous, either κ > 1, or

κ < 1.

Next, let pk > p
k
. If ρk(pk) ≤ 1

ω̂
, then, θk(pk) ≤ ρk(pk) ≤ 1

ω̂
. Assume instead that

ρk(pk) >
1
ω̂

. Let p̂k such that χk(p̂k) = ω̂ = 1
ρk(p̂k)

. Then, ρk(pk) > ρk(p̂k) = 1
ω̂

and, by

monotonicity, pk > p̂k. Therefore, χk(pk) ≥ χk(p̂k) = ω̂. Moreover, by Lemma X, we have

that θk(x) ≤ 1
χk(x)

. It follows that θk(x) ≤ 1
χk(x)

≤ 1
ω̂

.

Finally, assume that ρk(pk) <
1
ω̂

. As in the previous paragraph, let p̂k such that χk(p̂k) =

ω̂ = 1
ρk(p̂k)

. By monotonicity, p̂k > pk. Moreover, as already argued in the proof of

Lemma XII, for every t ∈ [pk, p̂k],

ρ′k(t)

ρk(t)
=
ι′k(t)

ιk(t)
+

ιk(t)

tρk(t)
(ρk(t)χk(t)− 1) ,

≤ ι′k(t)

ιk(t)
+

ιk(t)

tρk(t)
(ρk(p̂k)χk(p̂k)− 1) , by monotonicity,
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=
ι′k(t)

ιk(t)
, by definition of p̂k.

Integrating this inequality between pk and p̂k, we obtain that ρk(p̂k)
ρk(pk)

≤ ιk(p̂k)
ιk(pk)

. Therefore,

ρk(pk) ≥ ρk(p̂k)
ιk(pk)

ιk(p̂k)
=

1− ω̂
ω̂

1

1− χk(pk)
.

Proposition IV. Suppose Assumption 1 holds for firm f . Assume that µ̄f = µ̄j ≤ µ∗,

and that ρj is non-decreasing on (p
j
,∞) for every j ∈ f . Assume also, using the notation

introduced in Lemma XIV, that there exists ω̂ > 0 such that, for every j ∈ f , Sj = {ω̂} .

Then, sf is strictly increasing.

Proof. As in the proof of Lemma IX, the expression in condition (xiv) can be split in two

terms (see equation (xv)). Since ρj is non-decreasing for every j ∈ f and by Lemma X, the

second sum is strictly negative. Next, we turn our attention to the first sum. Let ωf ∈ (0, ω̄f ),

i, j ∈ f , and pi, pj such that χi(pi) > ωf and χj(pj) > ωf . We want to show that

Ψ = ωfθi(pi)
1− ωfρj(pj)
1− ωfθi(pi)

+ ωfθj(pj)
1− ωfρi(pi)
1− ωfθj(pj)

− ρi(pi)− ρj(pj) ≤ 0. (xvi)

To fix ideas, assume that ρi(pi) ≤ ρj(pj). If ρi(pi) ≥ 1
ωf

, then condition (xvi) is clearly

satisfied, since, by Lemma X, 1 − ωfθi(pi) and 1 − ωfθj(pi) are strictly positive. Assume

instead that ρi(pi) <
1
ωf

. Then, we claim that ωf < ω̂. Assume for a contradiction that

ω̂ ≤ ωf . Since Si = {ω̂}, there exists p̂i > p
i

such that χi(p̂i) = ω̂ = 1
ρi(p̂i)

. Therefore,

ρi(pi) < ρi(p̂i) and, by monotonicity, pi < p̂i. Since χi is non-decreasing, it follows that

ωf < χi(pi) ≤ χi(p̂i) = ω̂,

which is a contradiction. Therefore, ωf < ω̂.

We distinguish three cases. Assume first that ρj(pj) <
1
ω̂

. Then, by Lemma XIV,

ρk(pk) ≥
1− ω̂
ω̂

1

1− χk(pk)
≥ 1− ω̂

ω̂

1

1− ωf
,

for k ∈ {i, j}. In addition, θi(pi)
1−ωfθi(pi) ≤

ρi(pi)
1−ωfρi(pi) and

θj(pj)

1−ωfθj(pj) ≤
ρj(pj)

1−ωfρj(pj) . Therefore,

Ψ ≤ φωf ,ω̂ (ρi(pi), ρj(pj)) ,

which, by Lemma XIII, is non-positive, since ω̂ < ω̄f ≤ ω∗.

Next, assume that ρi(pi) <
1
ω̂
≤ ρj(pj). Then, by Lemma XIV,

ρi(pi) ≥
1− ω̂
ω̂

1

1− χi(pi)
≥ 1− ω̂

ω̂

1

1− ωf
,
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and θj(pj) ≤ 1
ω̂

. Therefore,

Ψ ≤ ωfθi(pi)

1− ωfθi(pi)

(
1− ωf

ω̂

)
+

ωf

ω̂

1− ωf

ω̂

(1− ωfρi(pi))− ρi(pi)−
1

ω̂
,

≤ ωfρi(pi)

1− ωfρi(pi)

(
1− ωf

ω̂

)
+

ωf

ω̂

1− ωf

ω̂

(1− ωfρi(pi))− ρi(pi)−
1

ω̂
,

= φωf ,ω̂

(
ρi(pi),

1

ω̂

)
,

≤ 0 by Lemma XIII.

Finally, assume that ρi(pi) ≥ 1
ω̂

. By Lemma XIV, θi(pi) ≤ 1
ω̂

and θj(pj) ≤ 1
ω̂

. Therefore,

Ψ ≤ ωfθi(pi)

1− ωfθi(pi)

(
1− ωf

ω̂

)
+

ωfθj(pj)

1− ωfθj(pj)

(
1− ωf

ω̂

)
− 1

ω̂
− 1

ω̂
,

≤
ωf

ω̂

1− ωf

ω̂

(
1− ωf

ω̂

)
+

ωf

ω̂

1− ωf

ω̂

(
1− ωf

ω̂

)
− 1

ω̂
− 1

ω̂
,

= φωf ,ω̂

(
1

ω̂
,

1

ω̂

)
,

≤ 0, by Lemma XIII.

Condition Si = {ω̂} ∀i in Proposition IV may look a little bit arcane. The following

corollary is easier to understand:

Corollary II. Suppose firm f is such that there exist a C3, strictly decreasing and log-convex

function hf and strictly positive scalars (αj, βj)j∈f such that hj(pj) = αjh
f (βjpj) for every

j ∈ f and pj > 0. Assume that hf satisfies Assumption 1, ρf is non-decreasing on (pf ,∞),

and µ̄f < µ∗. Then, sf is strictly increasing.

Proof. It is straightforward to check that hj satisfies Assumption 1, ρj is non-decreasing on

(p
j
,∞), and µ̄f = µ̄j for every j ∈ f . Next, we show that Si ⊆ Sj for all i, j ∈ f . Let i, j ∈ f .

If Si is empty, then, trivially, Si ⊆ Sj. Assume instead that Si 6= ∅, and let ω̂ ∈ Si. There

exists p̂i > p
i

such that

χi(p̂i) = ω̂ =
1

ρi(p̂i)
.

Since hi(pi) = αih
f (βipi), it is easy to show that ρi(p̂i) = ρf (βip̂i) and χi(p̂i) = χf (βip̂i). Let

p̂j = βi
βj
p̂i. Then,

χj (p̂j) = χf
(
βj
βi
βj
p̂i

)
= χi(p̂i) = ω̂ =

1

ρi(p̂i)
=

1

ρf (βip̂i)
=

1

ρj(p̂j)
.

Therefore, ω̂ ∈ Sj, and Si ⊆ Sj. It follows that Si = Sj for all i, j ∈ f .

37



If Si 6= ∅, then, by Proposition IV, sf is strictly increasing. Assume instead that Si = ∅
for all i. Let i ∈ f . By Lemma XIV, either χi(pi)ρi(pi) < 1 for all pi, or χi(pi)ρi(pi) > 1 for

all pi. Assume first that χi(pi)ρi(pi) < 1 for all pi. Let j ∈ f and pj > p
j
. Then,

χj(pj)ρj(pj) = χi

(
βj
βi
pj

)
ρi

(
βj
βi
pj

)
< 1.

Therefore, χjρj < 1 for every j in f . It follows that

lim
pj→∞

ρj(pj) ≤ lim
pj→∞

1

χj(pj)
=

1

ω̄f
<∞.

Therefore, limpj→∞ hj(pj) = 0 for every j ∈ f . (If limpj→∞ hj(pj) were strictly positive, then,

since limpj→∞ γj(pj) = 0, ρj(pj) would go to ∞ as pj goes to ∞.) Hence, by Lemma IX, sf

is strictly increasing.

Finally, assume that χi(pi)ρi(pi) > 1 for all pi. Then, using the same argument as above,

χjρj > 1 for every j ∈ f . Let i ∈ f , and assume for a contradiction that p
i
> 0. Since

1/χi is non-increasing, and since, by continuity, ιi(pi) = 1, it follows that limpi→p+
i
χi(pi) =

0. Therefore, limpi→p+
i
ρi(pi) = ∞, which is a contradiction, since ρi is non-decreasing.

Therefore, p
i

= 0.

Assume for a contradiction that limpi→0+ ιi(pi) = 1. Then, using the same reasoning as

in the previous paragraph, limpi→0+ ρi(pi) = ∞, which is again a contradiction, since ρi is

non-decreasing. Therefore, limpi→0+ ιi(pi) > 1, and ω̂ ≡ limpi→0+ χi(pi) is strictly positive.

In addition, since

χj(pj) = χi

(
βj
βi
pj

)
,

limpj→0+ χj(pj) = ω̂ for every j ∈ f . Notice that, for every j ∈ f , for every pj > 0,

ρj(pj) ≥ lim
p′j→0+

ρj(p
′
j) ≥ lim

p′j→0+

1

χj(p′j)
=

1

ω̂
,

and that, by Lemma X,

θj(pj) ≤
1

χj(pj)
≤ lim

p′j→0+

1

χj(p′j)
=

1

ω̂
.

It follows that

max
i∈f

sup
(0,∞)

θi ≤
1

ω̂
≤ min

i∈f
inf

(0,∞)
ρi,

i.e., condition (a) in Theorem II holds. By Lemma VII, sf is therefore strictly increasing.

Proposition V. Suppose Assumption 1 holds for firm f . Assume that µ̄f = µ̄j ≤ µ∗, and

that ρj is non-decreasing on (p
j
,∞) for every j ∈ f . Assume also that θj(pj) ≤ 1

ω̄f
for every

j ∈ f and pj ∈ (p
j
,∞). Then, sf is strictly increasing.
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Proof. Let i, j ∈ f , ωf ∈ (0, ω̄f ) and pi, pj > 0 such that χi(pi) > ωf and χj(pj) > ωf . Define

Ψ =
ωfθi(pi)

1− ωfθi(pi)
(
1− ωfρj(pj)

)
+

ωfθj(pj)

1− ωfθj(pj)
(
1− ωfρi(pi)

)
− ρi(pi)− ρj(pj).

As in the previous proofs, all we need to do is show that Ψ ≤ 0. Assume first that ρi(pi) ≥ 1
ω̄f

and ρj(pj) ≥ 1
ω̄f

. Then,

max (θi(pi), θj(pj)) ≤ min (ρi(pi), ρj(pj)) .

Therefore, Ψ < 0.

Next, assume that ρi(pi) <
1
ω̄f

and ρj(pj) ≥ 1
ω̄f

. Then, we claim that

ρi(pi) ≥
1− ω̄f

ω̄f
1

1− ωf
. (xvii)

To see this, assume first that Si = {ω̂i}, where ω̂i ∈ (0, ω̄f ). Since ρi(pi) <
1
ω̄f

< 1
ω̂i

, by

Lemma XIV,

ρi(pi) ≥
1− ω̂i
ω̂i

1

1− χi(pi)
≥ 1− ω̄f

ω̄f
1

1− ωf
.

Assume instead that Si = ∅. By Lemma XIV, either χiρi < 1 or χiρi > 1. If χiρi > 1, then

we know from the proof of Corollary II that

ρi ≥ sup
1

χi
≥ 1

ω̄f
.

This contradicts our assumption that ρi(pi) <
1
ω̄f

. If, instead, χiρi < 1, then we know from

the proof of Corollary II that limp′i→∞ hi(p
′
i) = 0. Therefore, by Lemma XII, inequality (xvii)

holds.

Therefore,

Ψ ≤ ωfθi(pi)

1− ωfθi(pi)

(
1− ωf

ω̄f

)
+

ωf

ω̄f

1− ωf

ω̄f

(
1− ωfρi(pi)

)
− ρi(pi)−

1

ω̄f
,

≤ ωfρi(pi)

1− ωfρi(pi)

(
1− ωf

ω̄f

)
+

ωf

ω̄f

1− ωf

ω̄f

(
1− ωfρi(pi)

)
− ρi(pi)−

1

ω̄f
,

= φωf ,ω̄f

(
ρi(pi),

1

ω̄f

)
,

≤ 0 by Lemma XIII.

Finally, assume that ρi(pi) <
1
ω̄f

and ρj(pj) <
1
ω̄f

. Then, as above,

ρk(pk) ≥
1− ω̄f

ω̄f
1

1− ωf
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for k ∈ {i, j}. Therefore,

Ψ ≤ φωf ,ω̄f (ρi(pi), ρj(pj)) ,

which is non-positive by Lemma XIII.

Corollary III. Suppose Assumption 1 holds for firm f . Assume that µ̄f = µ̄j ≤ µ∗, and

that ρj is non-decreasing on (p
j
,∞) for every j ∈ f . Assume also that θj is non-decreasing

on (p
j
,∞) for every j in f . Then, sf is strictly increasing.

Proof. Let k ∈ f . Since θk is non-increasing, for every pk > p
k
,

θk(pk) ≤ lim
p′k→∞

θk(p
′
k) ≤ lim

p′k→∞

1

χk(p′k)
=

1

ω̄f
,

where the second inequality follows from Lemma X. Therefore, by Proposition V, sf is

strictly increasing.

V.4 Proof of Proposition III

Proof. Let ((hj)j∈N , H
0,F , (cj)j∈N ) be a pricing game satisfying Assumption 1. We rewrite

the function Ω as follows:

Ω(H) =
∑
f∈F

∑
j∈f

(
hj(rj(m

f (H))) + H0

|N |

)
H

,

=
∑
f∈F

mf (H)− 1

mf (H)

∑
j∈f

(
hj(rj(m

f (H))) + H0

|N |

)
∑

j∈f γj(rj(m
f (H)))

,

where we have used equation (14) in the paper. Hence, to establish equilibrium uniqueness,

it is sufficient to show that, for every f ∈ F , the ratio
∑
j∈f

(
hj(rj(m

f (H)))+H0

|N|

)
∑
j∈f γj(rj(m

f (H)))
is strictly

decreasing in H. This is equivalent to showing that the ratio ξf (µf ) ≡
∑
j∈f

(
hj(rj(µ

f ))+H0

|N|

)
∑
j∈f γj(rj(µ

f ))
is

strictly increasing in µf .

Note that ξf is continuous on (1, µ̄f ), and C1 on (1, µ̄f ) \ {µ̄j}j∈f . Hence, a sufficient

condition for ξf to be strictly increasing is that ξf ′(µf ) > 0 for every µf ∈ (1, µ̄f ) \ {µ̄j}j∈f .
Fix such a µf , and let f ′ be the set of j’s such that µ̄j > µf . Then,

ξf (µf ) =

∑
j /∈f ′

(
hj(∞) + H0

|N |

)
+
∑

j∈f ′

(
hj(rj(µ

f )) + H0

|N |

)
∑

j∈f ′ γj(rj(µ
f ))

,
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and

ξf ′(µf ) =
1(∑

j∈f ′ γj(rj(µ
f ))
)2

−∑
j /∈f ′

(
hj(∞) +

H0

|N |

)∑
k∈f

r′k(µ
f )γ′k(rk(µ

f ))

+
∑
j,k∈f ′

r′j(µ
f )

(
h′j(rj(µ

f ))γk(rk(µ
f ))− γ′j(rj(µf ))

(
hk(rk(µ

f )) +
H0

|N |

)))
,

>

∑
j,k∈f ′ r

′
j(µ

f )
(
h′j(rj(µ

f ))γk(rk(µ
f ))− γ′j(rj(µf ))

(
hk(rk(µ

f )) + H0

|N |

))
(∑

j∈f ′ γj(rj(µ
f ))
)2 ,

=

∑
j,k∈f ′ r

′
j(µ

f )(−γ′j(rj(µf )))
(
−θj(rj(µf ))γk(rk(µf )) + hk(rk(µ

f )) + H0

|N |

)
(∑

j∈f ′ γj(rj(µ
f ))
)2 ,

>

∑
j,k∈f ′ r

′
j(µ

f )(−γ′j(rj(µf )))
(
−θj(rj(µf ))γk(rk(µf )) + H0

|N |

)
(∑

j∈f ′ γj(rj(µ
f ))
)2 ,

≥

∑
j,k∈f ′ r

′
j(µ

f )(−γ′j(rj(µf )))
(
−γk(rk(µf ))
χj(rj(µf ))

+ H0

|N |

)
(∑

j∈f ′ γj(rj(µ
f ))
)2 , (xviii)

where the last inequality follows by Lemma X.

We can now prove the first part of the proposition. LetH0 > 0. Put p = maxf∈F maxj∈f pj.

By Lemma A and Assumption 1, the functions γk(·) and 1/χj(·) are non-increasing on (p,∞).

Moreover, limpk→∞ γk(pk) = 0 and limpj→∞ 1/χj(pj) ≥ 0. Hence, there exists c > p such

that γk(c)/χj(c) < H0/|N | for every f ∈ F and j, k ∈ f . Suppose that the pricing game

((hj)j∈N , H
0,F , (cj)j∈N ) is such that H0 ≥ H0 and ci ≥ c for every i ∈ N . Then, for

every i ∈ N and µ ∈ (1, µ̄i), we have that ri(µ) ≥ c. Hence, by monotonicity, for every

f ∈ F , µf ∈ (1, µ̄f ), and j, k ∈ f such that µ̄j > µf and µ̄k > µf , γk(rk(µf ))
χj(rj(µf ))

< H0

|N | . Using

inequality (xviii), this implies that, for every firm f , for every µf , ξf ′(µf ) > 0 whenever

µf /∈ {µ̄j}j∈f . Hence, Ω is strictly decreasing, and the pricing game ((hj)j∈N , H
0,F , (cj)j∈N )

has a unique equilibrium.

We now turn our attention to the second part of the lemma. Let c > 0. For every i ∈ N ,

let p̂i be the monopolistic competition price for product i given marginal cost c. Choose

some H0 such that H0

|N | >
γk(p̂k)
χj(p̂j)

for every f ∈ F and j, k ∈ f . (Since p̂i > p
i

for every

i, the ratios are well-defined.) Let ((hj)j∈N , H
0,F , (cj)j∈N ) be a pricing game satisfying

H0 ≥ H0 and ci ≥ c for every i ∈ N . Since ci ≥ c for every i, we have that ri(µ) ≥ p̂i for

every i. By monotonicity of the γ and χ functions, it follows that γk(rk(µf ))
χj(rj(µf ))

< H0

|N | for every

f ∈ F , µf ∈ (1, µ̄f ), and j, k ∈ f such that µ̄j > µf and µ̄k > µf . Combining this with

inequality (xviii) allows us to conclude that Ω is strictly decreasing, and that the pricing
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game ((hj)j∈N , H
0,F , (cj)j∈N ) has a unique equilibrium.

V.5 An Index Approach to Equilibrium Uniqueness

Fix a pricing game ((hj)j∈N , H
0,F , (cj)j∈N ) satisfying Assumption 1. We now follow an

index approach to derive conditions for equilibrium uniqueness. Since we will be working

with matrices, we will sometimes assume that F = {1, . . . , F}, and that firm f ’s set of

products is N f . To avoid differentiability issues which would prevent us from applying the

index theorem, we assume that µ̄j = µ̄f for every f ∈ F and j ∈ f .

We know that establishing uniqueness in the pricing game is equivalent to establishing

uniqueness in the auxiliary game in which firms are simultaneously choosing their µf ’s. We

also know that a profile µ = (µf )f∈F is an equilibrium of the auxiliary game if and only if

for every f ∈ F ,

φf (µ) ≡ (µf − 1)


(∑
k∈N f

hk

)
+

∑
g∈F
g 6=f

∑
k∈N f

hk

+H0

− µf ∑
k∈N f

γk = 0.

In the following, we derive conditions under which the map φ has a unique zero. We do so by

showing that, under those conditions, the determinant of the Jacobian matrix of φ evaluated

at µ is strictly positive whenever φ(µ) = 0. We have shown in the proof of Lemma G that

∂φf

∂µf
=
∑
f∈F

∑
k∈N f

hk +H0 ≡ H(µ).

Moreover, if g 6= f , then
∂φf

∂µg
= (µf − 1)

∑
k∈N g

r′kh
′
k.

Therefore,

det J(φ) =

∣∣∣∣∣∣∣∣∣
H(µ) (µ1 − 1)

∑
k∈N 2 r′kh

′
k · · · (µ1 − 1)

∑
k∈NF r

′
kh
′
k

(µ2 − 1)
∑

k∈N 1 r′kh
′
k H(µ) · · · (µ2 − 1)

∑
k∈NF r

′
kh
′
k

...
...

. . .
...

(µF − 1)
∑

k∈N 1 r′kh
′
k (µF − 1)

∑
k∈N 2 r′kh

′
k · · · H(µ)

∣∣∣∣∣∣∣∣∣ ,
=

(∏
f∈F

(µf − 1)
∑
k∈N f

r′kh
′
k

)
detM

((
1 +

H(µ)

(µf − 1)
∑

k∈N f r
′
k(−h′k)

)
1≤f≤F

)
,

where the second line has been obtained by dividing row f by µf − 1 and column f by∑
k∈N f r

′
kh
′
k for every f in {1, . . . , F}, and by using the F-linearity of the determinant. By
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Lemma I,

det (J(φ)) =

(∏
f∈F

(µf − 1)
∑
k∈N f

r′kh
′
k

)
(−1)F

((∏
f∈F

(
1 +

H(µ)

(µf − 1)
∑

k∈N f r
′
k(−h′k)

))

−
∑
g∈F

∏
f 6=g

(
1 +

H(µ)

(µf − 1)
∑

k∈N f r
′
k(−h′k)

))
,

=

(∏
f∈F

(µf − 1)
∑
k∈N f

r′kh
′
k

)
(−1)F

(∏
f∈F

(
1 +

H(µ)

(µf − 1)
∑

k∈N f r
′
k(−h′k)

))

×

1−
∑
f∈F

1

1 + H(µ)
(µf−1)

∑
k∈Nf r

′
k(−h′k)

 ,

=

(∏
f∈F

(
H(µ) + (µf − 1)

∑
k∈N f

r′k(−h′k)

))
︸ ︷︷ ︸

>0

1−
∑
f∈F

1

1 + H(µ)
(µf−1)

∑
k∈Nf r

′
k(−h′k)

 .

Therefore, we need to show that

∑
f∈F

µf−1
H(µ)

∑
k∈f r

′
k(−h′k)

1 + µf−1
H(µ)

∑
k∈f r

′
k(−h′k)

< 1 (xix)

whenever φ(µ) = 0.

We now relate this uniqueness condition to the one we derived by following an aggregative

games approach. Applying the implicit function theorem to equation (14), we obtain:

mf ′(H) =
−1

H

mf (H)(mf (H)− 1)

1 +mf (H)(mf (H)− 1)
∑
k∈f r

′
k(−γ′k)∑

k∈f γk

,

=
−1

H

mf (H)(mf (H)− 1)

1 + (mf (H)− 1)
∑
k∈f((mf (H)−1)r′k(−h′k)+γk)∑

k∈f γk

,

=
−1

H

mf (H)(mf (H)− 1)

mf (H) + (mf (H)− 1)2
∑
k∈f r

′
k(−h′k)∑

k∈f γk

,

= −
mf (H)−1

H

1 + mf (H)−1
H

∑
k∈f r

′
k(−h′k)

,

where the second line follows by equation (11), and the fourth line follows by equation (14).
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The derivative of the aggregate fitting-in function is therefore given by:

Γ′(H) =
∑
f∈F

mf ′(H)
∑
k∈f

r′kh
′
k =

∑
f∈F

mf−1
H

∑
k∈f r

′
k(−h′k)

1 + mf−1
H

∑
k∈f r

′
k(−h′k)

.

The index condition (xix) is therefore equivalent to the fact that the slope of the aggregate

fitting-in function is strictly less than unity whenever that function intersects the 45-degree

line. This is, in turn, equivalent to Ω′(H) < 0 whenever Ω(H) = 1, which is an index

condition for the mapping Ω− 1.

VI Functional Forms and Cookbooks for Applied Work

VI.1 Equilibrium Existence: Functional Forms and Cookbook

Recall that Hι was defined as the set of C3, strictly decreasing and log-convex functions from

R++ to R++ that satisfy Assumption 1. In this section, we provide examples of functions h

that belong to Hι. We also develop a cookbook for constructing such functions.

Cookbook. One way of looking for an example of a function h that belongs toHι is to start

with a function h that is positive, decreasing and log-convex, and check that the associated

ι function is non-decreasing whenever it is strictly greater than 1. This is tedious, because

nothing guarantees that ι will have the right monotonicity property. Another possibility

is to start with a function ι that is positive and non-decreasing, integrate a second-order

differential equation to obtain a function h, and adjust constants of integration to ensure

that h is positive, decreasing and log-convex. The following proposition states that such

constants of integration exist:

Proposition VI. Let ι̃ : R++ −→ R++ be a C1 function such that ι̃ is non-decreasing,

limp→0+ ι̃(p) > 0, and ι̃(p) > 1 for some p > 0. For every (α, β) ∈ R2
++, let

hα,β(p) = α

(
β −

∫ p

1

exp

(
−
∫ t

1

ι̃(u)

u
du

)
dt

)
.

Then, there exists β > 0 such that hα,β ∈ Hι if and only if α > 0 and β ≥ β.

Proof. It is straightforward to show, using standard differential equation techniques, that

−xh
′′(x)
h′(x)

= ι̃(x) for all x if and only if h = hα,β for some α 6= 0 and β ∈ R. All we need to do

now is look for the set of pairs (α, β) such that hα,β ∈ Hι.

Note that, for all α, β,

hα,β′(x) = −α exp

(
−
∫ x

1

ι(u)

u
du

)
,
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i.e., hα,β′ has the same sign as −α. It follows that hα,β cannot be in Hι if α ≤ 0. In addition,

if hα,β ∈ Hι for some α > 0 and β ∈ R, then hα
′,β ∈ Hι for all α′ > 0. Therefore, we can set

α equal to 1 without loss of generality.

The problem now boils down to finding the set of β’s such that hβ ≡ h1,β is strictly

positive, decreasing and log-convex. We already know that hβ′ < 0. Therefore, the fact that

hβ has to be decreasing does not impose any constraint on β.

Clearly, limp→∞ h
0(p) exists and is strictly negative. We now show that this limit is finite.

Let x0 > 0 such that ι̃(x0) > 1. Proving that limp→∞ h
0(p) is finite is equivalent to showing

that the function t 7→ exp
(
−
∫ t

1
ι̃(u)
u
du
)

is integrable on [x0,∞). For every t ≥ x0,

exp

(
−
∫ t

1

ι̃(u)

u
du

)
≤ exp

(
−
∫ x0

1

ι̃(u)

u
du−

∫ t

x0

ι(x0)

u
du

)
,

= exp

(
−
∫ x0

1

ι̃(u)

u
du

)
exp

(
−ι̃(x0) log

(
t

x0

))
,

= exp

(
−
∫ x0

1

ι̃(u)

u
du

)(
t

x0

)−ι̃(x0)

.

(xx)

The last expression is integrable on [x0,∞), since ι̃(x0) > 1. Therefore, t 7→ exp
(
−
∫ t

1
ι̃(u)
u
du
)

is integrable on [x0,∞) and β̂ ≡ limp→∞ h
0(p) is finite and strictly negative. It follows that

the function hβ is strictly positive if and only if β ≥ β̂.

Let β ≥ β̂. Then,

d

dx

hβ′(x)

hβ(x)
=
hβ′′(x)hβ(x)−

(
hβ′(x)

)2

hβ(x)2
=

1

x

−hβ′(x)

hβ(x)

(
ι̃(x)− x−h

β′(x)

hβ(x)

)
.

Therefore, hβ is log-convex if and only if ι̃(x) ≥ x−h
β′(x)

hβ(x)
for all x > 0. Since hβ(x) increases

with β and hβ′(x) does not depend on β, it follows that, if hβ is log-convex and β′ > β, then

hβ
′

is also log-convex.

Moreover, using (xx), we see that, for every x > x0,

−xhβ′(x) ≤ x exp

(
−
∫ x0

1

ι̃(u)

u
du

)( x
x0

)−ι̃(x0)

,

= exp

(
−
∫ x0

1

ι̃(u)

u
du

)(
x0
)ι̃(x0)

x1−ι̃(x0) −→
x→∞

0,

where the last line follows from the fact that ι̃(x0) > 1.

Let β > β̂. Then, limp→∞ h
β(p) > 0, and therefore, limx→∞ x

−hβ′(x)
hβ(x)

= 0. Since

limp→∞ ι̃(p) > 0, it follows that there exists x̂ such that ι̃(x) ≥ x−h
β′(x)

hβ(x)
whenever x ≥ x̂.
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In addition, since hβ increases with β, we also have that, for all β′ ≥ β, ι̃(x) ≥ x−h
β′′(x)

hβ′ (x)

whenever x ≥ x̂.

Next, we turn our attention to limx→0+
−xhβ′(x)
hβ(x)

. Note that

d

dx
(−xhβ′(x)) = −hβ′(x) (1− ι̃(x)) .

Therefore, if limp→0+ ι̃(p) > 1 or limp→0+ ι̃(p) < 1, then x 7→ (−xhβ′(x)) is monotone in

the neighborhood of zero, and limx→0+ −xhβ′(x) exists. If instead lim0+ ι̃ = 1, then, by

monotonicity, either there exists ε > 0 such that ι̃(x) = 1 for all x ∈ (0, ε), or ι̃(x) > 1

for all x > 0. In both cases, x 7→ (−xhβ′(x)) is monotone in the neighborhood of zero,

and limx→0+ −xhβ′(x) therefore exists. Note that limp→0+ hβ(p) trivially exists, since hβ is

monotone.

We distinguish two cases. Suppose first that limx→0+ −xhβ′(x) is finite, and denote this

limit by l. If lim0+ hβ =∞, then

ι̃(x)− x−h
β′(x)

hβ(x)
−→
x→0+

lim
p→0+

ι̃(p) > 0.

Therefore, there exists x̃ > 0 such that ι̃(x) ≥ x−h
β′(x)

hβ(x)
for all x ∈ (0, x̃]. In addition, the

inequality also holds if we replace β by β′ ≥ β. If, instead, lim0+ hβ <∞, then

ι̃(x)− x−h
β′(x)

hβ(x)
−→
x→0+

lim
p→0+

ι̃(p)︸ ︷︷ ︸
>0

− l

limp→0+ hβ̂(p) + β − β̂
,

which is strictly positive for β high enough. For such a high enough β, we obtain again the

existence of an x̃ such that ι̃(x) ≥ x−h
β′(x)

hβ(x)
for all x ∈ (0, x̃].

Next, assume instead that limx→0+ −xhβ′(x) = ∞. Let M > 0. There exists ε > 0 such

that hβ′(x) < −M/x whenever x ≤ ε. Integrating this inequality between x and ε, we see

that

hβ(x) > hβ(ε) +M log
ε

x
−→
x→0+

∞.

Therefore, limp→0+ hβ(p) =∞, and we can apply l’Hospital’s rule:

lim
x→0+

−xhβ′(x)

hβ(x)
= lim

x→0+

−xhβ′′(x)− hβ′(x)

hβ′(x)
= lim

p→0+
ι̃(p)− 1.

Therefore,

ι̃(x)− x−h
β′(x)

hβ(x)
−→
x→0+

1 > 0.

Again, this gives us the existence of an x̃ such that ι̃(x) ≥ x−h
β′(x)

hβ(x)
for all x ∈ (0, x̃].
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To summarize, we have found a β > β̂ and two strictly positive reals x̃ and x̂ such that

for all β′ ≥ β, ι̃(x) ≥ x−h
β′′(x)

hβ′ (x)
whenever x ≥ x̂ or x ≤ x̃. If x̃ ≥ x̂, then we are done: there

exists β > β̂ such that ι̃(x) ≥ x−h
β′(x)

hβ(x)
for all x > 0. Assume instead that x̃ < x̂. Then, for

every β′ ≥ β and x ∈ [x̃, x̂],

x
−hβ′′(x)

hβ′(x)
≤ x
−hβ′′(x)

hβ′(x̂)
, since hβ

′
is non-increasing,

= x
−hβ′(x)

hβ(x̂) + β′ − β
, since hβ

′ − hβ = β′ − β,

≤ max
t∈[x̃,x̂]

(
−thβ′(t)

)
︸ ︷︷ ︸

finite, by continuity and compactness

1

hβ(x̂) + β′ − β
−→
β′→∞

0.

Therefore, there exists β′ ≥ β such that ι̃(x) ≥ x−h
β′′(x)

hβ′ (x)
for all x ∈ [x̃, x̂]. It follows that

ι̃(x) ≥ x−h
β′′(x)

hβ′ (x)
for all x > 0.

This implies that the set

B ≡
{
β ≥ β̂ : hβ is log-convex

}
is non-empty. In addition, we also know that if β′ > β and β ∈ B, then β′ ∈ B. Put

β = inf B. Assume for a contradiction that β /∈ B. Then, there exists x > 0 such that

ι̃(x) < x
−hβ′(x)

hβ(x)
.

Then, by continuity of hβ in β, there exists β′ > β such that

ι̃(x) < x
−hβ′′(x)

hβ′(x)
.

But then, β′ ∈ B and hβ
′

is not log-convex, a contradiction. Therefore, the set of β’s such

that hβ is positive, decreasing and log-convex is [β,∞).

The appeal of Proposition VI is that it allows us to use (ιj)j∈N as a primitive, instead of

(hj)j∈N . This is useful, because markup patterns are governed by the ι functions.

Once an admissible h function has been generated, it is straightforward to modify it by

introducing price sensitivity and quality parameters:

Proposition VII. Let h ∈ Hι and (α, β, δ, ε) ∈ R2
++ × R2

+. For every p > 0, define

h̃(p) = αh (βp+ δ) + ε.

Then, h̃ ∈ Hι.
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Proof. See the proof of Proposition VIII.

Examples. As we mention in the paper, the set of CES (hi(pi) = aip
1−σ
i , ai > 0, σ > 1)

and MNL (hi(pi) = exp((ai − pi)/λi), ai ∈ R, λi > 0) h-functions is contained in Hι. One

way of bridging the gap between CES and MNL functions is to consider the following family

of h-functions: For every λ > 0, φ ∈ [0, 1] and p > 0,

hφ,λ(p) =

exp
(
−λpφ−1+φ2

φ

)
if φ > 0,

p−λ if φ = 0.

It is easy to check that hφ,λ converges pointwise to h0,λ (i.e., CES) when φ goes to zero, and

to MNL when φ goes to 1, and that hφ,λ ∈ Hι for every φ, λ.

Other examples of admissible h-functions include h(p) = 1/ log(1 + ep), h(p) = exp(e−p),

h(p) = 1 + 1/(1 + e1+p), h(p) = 1 + 1/ cosh(2 + x), etc. All these functions can be tweaked

by adding price sensitivity and quality parameters, as described in Proposition VII.

VI.2 Equilibrium Uniqueness: Functional Forms and Cookbook

Cookbook. A priori, condition (a) in Theorem II seems tedious to check if the firm under

consideration has heterogeneous products. The following proposition shows that a certain

type of product heterogeneity can be easily handled, and provides a cookbook for applied

work:

Proposition VIII. Let h ∈ Hι such that supp>p θ(p) ≤ infp>p ρ(x). Let f be a finite and

non-empty set, and, for every j ∈ f , (αj, βj, δj, εj) ∈ R2
++ × R2

+. For every j ∈ f , define

hj(pj) = αjh(βjpj + δj) + εj, ∀pj > 0.

Then, for all j ∈ f , hj ∈ Hι. Moreover, maxj∈f suppj>pj
θj(pj) ≤ minj∈f infpj>pj ρj(pj).

Proof. Let j ∈ f . Then, for all p > 0,

h′j(p) = αjβjh
′(βjp+ δj) < 0,

h′′j (p) = αjβ
2
jh
′′(βjp+ δj) > 0,

γj(p) = αjγ(βjp+ δj),

γ′j(p) = αjβjγ
′(βjp+ δj),

ρj(p) = ρ(βjp+ δj) +
εj

αjγ(βjp+ δj)
≥ ρ(βjp+ δj),

θj(p) = θ(βjp+ δj),

ιj(p) =
βjp

βjp+ δj
ι(βjp+ δj).
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Therefore, hj is positive, decreasing and log-convex, and ιj is non-decreasing whenever ιj is

> 1. In addition, for every p > p
j
,

1 < ιj(p) ≤ ι(βjp+ δj).

Therefore, βjp+ δj > p, and

θj(p) ≤ sup
p′>p

θ(p′).

It follows that supp>p
j
θj(p) ≤ supp>p θ(p). Using the same reasoning, we also obtain that

infp>p
j
ρj(p) ≥ infp>p ρ(p). Therefore,

max
j∈f

sup
p>p

j

θj(p) ≤ max
j∈f

sup
p>p

θ(p),

≤ sup
p>p

θ(p),

≤ inf
p>p

ρ(p),

≤ min
j∈f

inf
p>p

ρ(p),

≤ min
j∈f

inf
p>p

j

ρj(p).

Examples. Proposition VIII can be applied as follows. Let h(p) = e−p for all p > 0. We

already know that h ∈ Hι. In addition, ρ(p) = θ(p) = 1 for all p > 0. By Proposition VIII, if

firm f is such that for all j ∈ f , there exist λj > 0 and aj ∈ R such that hj(pj) = e
aj−pj
λj for

all pj > 0 (i.e., firm f only has MNL products), then condition (a) in Theorem II holds for

firm f . This implies in particular that a multiproduct-firm pricing game with MNL demand

has a unique equilibrium.

Similarly, let h(p) = p1−σ for all p > 0 (σ > 1). Again, we already know that h ∈ Hι.

In addition, ρ(p) = θ(p) = σ/(σ − 1). Therefore, if firm f is such that for all j ∈ f , there

exist aj, bj, dj > 0 such that hj(pj) = aj (bjpj + dj)
1−σ for all pj > 0, then condition (a) in

Theorem II holds for firm f . In particular, a pricing game with CES demand has a unique

equilibrium. Other candidates for the base h include h(x) = exp (e−x), h(x) = 1+1/(1+e1+x),

h(x) = 1 + 1/ cosh(2 + x), etc.

Some functions satisfy condition (b) in Theorem II, but not condition (a). Consider the

following function: h(x) = 1
log(1+ex)

. It is easy to show that h ∈ Hι, ρ is non-increasing, and

µ̄ = 2(< 2.78). Therefore, condition (b) holds. However, condition sup θ(x) ≤ inf ρ(x) is not

satisfied.

It is easy to find functional forms for which Theorem II has no bite. Consider, for instance,

the family of functions hφ,λ ∈ Hι introduced in Section VI.1. It is easy to show that ρφ,λ(·) is

strictly decreasing whenever φ ∈ (0, 1). Therefore, none of the conditions in Theorem II hold.

With such functional forms, it is still possible to apply Proposition III to prove uniqueness of
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equilibrium, provided that marginal costs are sufficiently high and/or that the outside option

is sufficiently attractive.

VII Nested Demand Systems and Multi-Stage Discrete

/ Continuous Choice

VII.1 Multi-Stage Discrete/Continuous Choice

We model multi-stage discrete/continuous choice as follows. The (non-empty and finite) set

of products N is partitioned into a set of nests L. There is a continuum of consumers. The

type of a consumer is denoted by (η0, η) ∈ [−∞,∞)2. Those types are distributed according

to the measure µ. A consumer of type (η0, η) observes his type and the price vector (pj)j∈N
at the beginning of the choice process. He first decides whether to take the outside option,

in which case he receives the utility flow η0, or to continue searching. If he turns down the

outside option, then he receives the utility flow η, and moves on to the second stage of the

choice process. He then observes a vector of nest-level taste shocks (εl)l∈L, drawn i.i.d. from

a type-I extreme value distribution. If he picks nest l ∈ L, then he receives the utility flow

εl, and moves on to the third stage. In that third stage, he observes a random pair (ηl0, η
l)

drawn from a probability measure νl over [−∞,∞)2, and decides whether or not to take the

nest-specific outside option. If he does take that outside option, then he receives the utility

flow ηl0. If not, then he receives the utility flow ηl, and moves on to the fourth and last

stage of the choice process. In that last stage, he observes a vector of product-level taste

shocks (εj)j∈l drawn i.i.d. from a type-I extreme-value distribution, chooses a product j ∈ l,
receives the utility flow log hj(pj) + εj, and consumes −h′j(pj)/hj(pj) units of that product.

Consumers are assumed to be expected utility maximizers.

Thus, if a consumer of type (η0, η) turns down the outside option in stage 1, chooses nest

l ∈ L in stage 2, turns down the nest-specific outside option in stage 3, and chooses product

j ∈ l, then that consumer receives the utility flow log hj(pj) + εj + ηl + εl + η. If instead he

turns down the outside option in stage 1, chooses nest l ∈ L in stage 2, but takes the outside

option in stage 3, then he receives the utility flow ηl0 + εl + η.

To summarize, a multi-stage discrete/continuous choice process is a tuple (N ,L, µ, (νl)l∈L,
(hj)j∈N ), where N is a non-empty and finite set, L is a partition of N , µ is a measure over

[−∞,∞)2, νl is a probability measure over [−∞,∞)2 for every l ∈ L, and hj is a strictly

positive and C1 function for every j ∈ N . Throughout this section, we maintain the following

assumption:

Assumption ii. (a) For every j ∈ N , hj is a C1, strictly decreasing, and log-convex

function from R++ to R++.

(b) For every X ∈ R, the function (η0, η) ∈ [−∞,∞)2 7→ max(η0, X + η) is µ-integrable,
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and

µ
(
{(η0, η) ∈ R2 : η − η0 = X}

)
= 0.

(c) For every l ∈ L and X ∈ R, the function (ηl0, η
l) ∈ [−∞,∞)2 7→ max(ηl0, X + ηl) is νl-

integrable, and the random variable ηl− ηl0 (where (ηl0, η
l) is drawn from the probability

measure νl, conditionally on (ηl0, η
l) being finite) is continuously distributed.

As in Section I, Assumption ii-(a) ensures that log hj is an indirect subutility function for

every j. The integrability parts of Assumptions ii-(b) and (c) ensure that consumer surplus

is well-defined. The atomless parts of Assumptions ii-(b) and (c) will give us smooth choice

probabilities.

The following proposition provides a complete characterization of the set of demand

systems that can be derived from multi-stage discrete/continuous choice.

Proposition IX. Let D : RN++ −→ RN+ be a demand system. The following assertions are

equivalent:

(i) D can be derived from a model of multi-stage discrete/continuous choice (N ,L, µ,
(νl)l∈L, (hj)j∈N ) satisfying Assumption ii.

(ii) There exist functions Ψ, (Φl)l∈l and (hj)j∈N such that, for every p ∈ RN++, n ∈M and

i ∈ n,

Di(p) = −h′i(pi)Φn′

(∑
j∈n

hj(pj)

)
Ψ′

(∑
l∈L

Φm

(∑
k∈l

hk(pk)

))
, (xxi)

where:

(a) For every i ∈ N , hi is C1, strictly decreasing, and log-convex from R++ to R++,

(b) For every n ∈ L, Φn is C1 from R++ to R++; Moreover, H 7→ HΦn′(H)
Φn(H)

is non-

negative, non-decreasing, and bounded above by 1,

(c) Ψ is C1 from R++ to R; Moreover, Φ 7→ ΦΨ′(Φ) is non-negative and non-decreasing.

Moreover, overall consumer surplus at price vector p is equal to Ψ
(∑

l∈LΦl
(∑

k∈l hk(pk)
))

.

Proof. (i)⇒ (ii). let (N ,L, µ, (νl)l∈L, (hj)j∈N ) be a model of multi-stage discrete/continuous

choice satisfying Assumption ii. We fix a consumer, and compute his expected demand for

each product. We know from our analysis in Section I that, if the consumer ends up in nest

n in the fourth stage of the choice process, then he chooses product i ∈ n with probabi-

lity hi(pi)/
∑

j∈n hj(pj), and consumes −h′i(pi)/hi(pi) units of that product. Moreover, his

expected utility from choosing nest n in stage 3 is log
∑

j∈n hj(pj) + ηn ≡ logHn + ηn.

Hence, if the consumer ends up in nest n in the third stage of the choice process, then

he turns down the nest-specific outside option if and only if logHn + ηn ≥ ηn0 . (Ties are

irrelevant, since, by Assumption ii-(c), the event ηn0 − ηn = logHn arises with probability

zero if ηn0 and ηn are both finite, and the integrability condition implies that the event

51



(ηn0 , η
n) = (−∞,−∞) is assigned probability zero as well.) Conditional on choosing nest n in

stage 2, the consumer’s expected utility (which is well defined, due to the integrability part

of Assumption ii-(c)) is given by:

φn(Hn) =

∫
[−∞,∞)2

max(ηn0 , logHn + ηn)dνn(ηn0 , η
n),

=

∫
R
ηn0 dν

n(ηn0 ,−∞) +

∫
R
ηndνn(−∞, ηn) + νn({−∞} × R) logHn

+

∫
R2

max(ηn0 , logHn + ηn)dνn(ηn0 , η
n).

We now argue that φn is C1. To do so, we show that Hn ∈ R++ 7→
∫
R2 max(ηn0 , logHn +

ηn)dνn(ηn0 , η
n) is C1. Let H > 0. For every Hn > H, note that the partial derivative

∂
∂Hn max(ηn0 , logHn + ηn) exists νn-almost everywhere. That derivative is non-negative, and

bounded above by the νn integrable function (ηn0 , η
n) 7→ 1/H. Hence, Hn 7→

∫
R2 max(ηn0 , logHn+

ηn)dνn(ηn0 , η
n) is differentiable, and

∂

∂Hn

∫
R2

max(ηn0 , logHn + ηn)dνn(ηn0 , η
n) =

∫
R2

∂

∂Hn
max(ηn0 , logHn + ηn)dνn(ηn0 , η

n),

=

∫
(ηn0 ,η

n): logHn+ηn>ηn0

1

Hn
dνn(ηn0 , η

n),

= νn
(
{(ηn0 , ηn) ∈ R2 : logHn + ηn > ηn0 }

) 1

Hn
.

By Assumption ii-(c), this derivative is continuous in Hn. It follows that φn is C1, and that

Hnφn′(Hn) = νn({−∞} × R) + νn
(
{(ηn0 , ηn) ∈ R2 : logHn + ηn > ηn0 }

)
,

= νn
(
{(ηn0 , ηn) ∈ [−∞,∞)2 : logHn + ηn > ηn0 }

)
,

which is the probability that the consumer turns down the outside option in stage 3. Since

νn is a probability measure, Hnφn′(Hn) is non-negative, non-decreasing in Hn, and bounded

above by 1.

Put Φn(Hn) = expφn(Hn) for every Hn > 0. Then, Φn is C1 and strictly positive, and

Hn 7→ HnΦn′(Hn)
Φn(Hn)

is non-negative, non-decreasing, and bounded above by 1.

We can now move back to the second stage of the choice process. The expected utility

derived from choosing nest n is φn(Hn) + εn. Hence, the consumer chooses nest n with pro-

bability Φn(Hn)/
∑

l∈LΦl(H l). The expected utility derived from turning down the outside

option in stage 1 is therefore equal to log
∑

l∈LΦl(H l) + η ≡ log Φ + η. Hence, a consumer

with type (η0, η) turns down the outside option in stage 1 if and only if log Φ + η ≥ η0.

(Again, due to Assumption ii-(b), ties are irrelevant.)

Let Ψ(Φ) be overall consumer surplus. By Assumption ii-(b), Ψ is well defined and given
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by

Ψ(Φ) =

∫
[−∞,∞)2

max (η0, log Φ + η) dµ(η0, η),

=

∫
R
η0dµ(η0,−∞) +

∫
R
(log Φ + η)dµ(−∞, η) +

∫
R2

max (η0, log Φ + η) dµ(η0, η).

We start by simplifying the term
∫
R(log Φ + η)dµ(−∞, η). By Assumption ii-(b), η ∈ R 7→

log Φ′ + η is µ(−∞, ·)-integrable for every Φ′ > 0. This implies in particular that η 7→ η

is µ(−∞, ·)-integrable. Let Φ′ 6= 1. Then, η 7→ log Φ′ = (log Φ′ + η) − η is the sum of

two µ(−∞, ·)-integrable functions. That function is therefore µ(−∞, ·)-integrable as well.

It follows that
∫
R | log Φ′|dµ(−∞, η) < ∞. Hence, µ({−∞} × R) < ∞. This allows us to

rewrite Ψ(Φ) as follows:

Ψ(Φ) =

∫
R
η0dµ(η0,−∞) +

∫
R
ηdµ(−∞, η) + µ({−∞} × R) log Φ

+

∫
R2

max (η0, log Φ + η) dµ(η0, η).

We now argue that Ψ is C1. To this end, we show that the contribution to consumer

surplus of consumers with finite types, given by Ψ̃(Φ) ≡
∫
R2 max (η0, log Φ + η) dµ(η0, η), is

C1. We would like to differentiate Ψ̃ under the integral sign. To do so, we first need to prove

that µ(SΦ) <∞ for every Φ > 0, where

SΦ =
{

(η0, η) ∈ R2 : η + log Φ ≥ η0

}
.

Let Φ > 0 and Φ′ > Φ. Clearly, SΦ ⊂ SΦ′ . For every Φ′′ > 0, define the following function:

gΦ′′ : (η0, η) ∈ R2 7→

{
η + log Φ′′ if (η0, η) ∈ SΦ′′ ,

0 otherwise.

Since (η0, η) 7→ max(η0, log Φ + η) and (η0, η) 7→ max(η0, log Φ′ + η) are both µ-integrable,

gΦ and gΦ′ are µ-integrable as well. As a result, gΦ′ − gΦ is µ-integrable, and

log(Φ′/Φ)µ(SΦ) =

∫
SΦ

| log(Φ′/Φ)|dµ =

∫
SΦ

|gΦ′ − gΦ|dµ <∞.

In words: For every Φ > 0, the mass of consumers who turn down the outside option is finite.

We are now in a position to prove differentiability. Let 0 < Φ < Φ. For every Φ ∈
(Φ,Φ), the partial derivative ∂

∂Φ
max(η0, log Φ + η) exists for µ-almost every (η0, η) (using

Assumption ii-(b)). Moreover, that partial derivative is non-negative, and bounded above by
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the function

(η0, η) ∈ R2 7→

{
1
Φ

if (η0, η) ∈ SΦ,

0 otherwise,

which is µ-integrable, since µ(SΦ) <∞. It follows that Ψ̃ is differentiable on (Φ,Φ), and

Ψ̃′(Φ) =
1

Φ
µ(SΦ).

Moreover, Ψ̃′ is continuous (by Assumption ii-(b)) and non-negative, and Φ 7→ ΦΨ̃′(Φ) is

non-decreasing (since SΦ ⊆ SΦ′ whenever Φ ≤ Φ′). We can conclude that Ψ is C1, and

Φ 7→ ΦΨ′(Φ) is non-negative and non-decreasing. Moreover, ΦΨ′(Φ) is equal to µ({(η0, η) ∈
[−∞,∞) : log η + Φ ≥ η0}), the mass of consumers who turn down the outside option in

stage 1.

To sum up, overall consumer surplus is equal to Ψ(Φ). A mass ΦΨ′(Φ) of consumers turn

down the outside option in stage 1. Out of those consumers, a fraction Φn/Φ choose nest n in

stage 2. Out of those consumers, a fraction HnΦn′(Hn)/Φn(Hn) turn down the nest-specific

outside option in stage 3. Out of those consumers, a fraction hi(pi)/H
n choose product i ∈ n

(and consume −h′i(pi)/hi(pi)) in stage 4. Hence, the total demand for good i is given by:

Di(p) = ΦΨ′(Φ)× Φn

Φ
× HnΦn′(Hn)

Φn
× hi
Hn
× −h

′
i

hi
= −h′iΦn′Ψ′,

which is the expression given in part (ii).

(ii) ⇒ (i). Conversely, suppose that the demand system D can be written as in part (ii)

of the proposition. We need to construct a measure µ over [−∞,∞)2 and a collection of

probability measures (νl)l∈L over [−∞,∞)2 that satisfy parts (b) and (c) of Assumption ii,

and such that the multi-stage discrete/continuous choice model (N ,L, µ, (νl)l∈L, (hj)j∈N )

gives rise to D.

We first construct the probability measures (φl)l∈L. Let n ∈ L. Put φn = log Φn. Then,

φn is C1, and Hn 7→ Hnφn′(Hn) is non-negative, non-decreasing, and bounded above by 1. We

now drop the nest superscript to ease notation. Our goal is to construct a joint probability

measure ν over [−∞,∞)2 that satisfies Assumption ii-(c), and such that, for every H > 0,

φ(H) =

∫
[−∞,∞)2

max(η0, logH + η)dν(η0, η).

Clearly, 0 ≤ limH→0Hφ
′(H) ≤ limH→∞Hφ

′(H) ≤ 1. Put α = limH→0Hφ
′(H) and

β = limH→∞Hφ
′(H)− α. If β = 0, then Hφ′(H) is constant. It follows that

φ(H) = α logH + φ(1).

This φ function can be trivially generated, e.g., by the discrete probability measure that
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puts weight α on the event (η0, η) = (−∞, φ(1)), and weight 1 − α on the event (η0, η) =

(φ(1),−∞).

We now turn our attention to the more interesting case in which β > 0. For every H > 0,

put

φ̃(H) =
1

β
(φ(H)− α logH) .

Note that φ̃ andHφ̃′(H) are non-decreasing, and that limH→0Hφ̃
′(H) = 0 and limH→∞Hφ̃

′(H) =

1.

Let ∆ be a random variable with continuous cumulative distribution function F (δ) =

1 − exp(−δ)φ̃′(exp(−δ)). (It follows from the properties of Hφ̃′(H) that F is indeed a

cumulative distribution function.) We use ∆ to define the random variables E0 and E as

follows:

E0 = φ̃(1)−max(0,∆),

E = E0 + ∆ = φ̃(1) + ∆−max(0,∆).

Clearly, the random variable E − E0 = ∆ is continuously distributed. Let ν̃ be the joint

probability distribution of (E0, E). We need to show that∫
R2

|max(η0, logH + η)|dν̃ <∞, ∀H > 0,

or, equivalently, ∫
R2

|η0 + max(0, logH + η − η0)|dν̃ <∞, ∀H > 0.

By definition of the random vector (E0, E), this is equivalent to showing that

I(H) =

∫
R

∣∣∣φ̃(1)−max(0, δ) + max(0, logH + δ)
∣∣∣ dF (δ) <∞, ∀H > 0.

We now simplify I(H). Suppose first that H ≤ 1. Then,

I(H) =

∫ 0

−∞
|φ̃(1)|dF (δ) +

∫ − logH

0

|φ̃(1)− δ|dF (δ) +

∫ ∞
− logH

|φ̃(1) + logH|dF (δ),

≤ |φ̃(1)|+ | logH| <∞.

Similarly, if H > 1, then,

I(H) =

∫ − logH

−∞
|φ̃(1)|dF (δ) +

∫ 0

− logH

|φ̃(1) + δ + logH|dF (δ) +

∫ ∞
0

|φ̃(1) + logH|dF (δ),

≤ |φ̃(1)|+ 2| logH| <∞.
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Hence, (η0, η) 7→ max(η0, logH + η) is µ-integrable for every H.

For every H > 0, let

ζ(H) =

∫
R2

max(η0, logH + η)dν̃(η0, η).

ζ(H) is the overall consumer surplus generated by the choice process ν̃ when the inside option

is worth logH. Note that, by definition of (η0, η),

ζ(1) = φ̃(1) +

∫
R

(−max(δ, 0) + max(0, δ)) dF (δ) = φ̃(1) = Φ(1).

Moreover, since E −E0 is continuously distributed, we know that ζ is differentiable (see the

first part of the proof), and

ζ ′(H) =
1

H
ν̃ ({(η0, η) : η + logH ≥ η0}) ,

=
1

H
(1− F (− logH)) ,

= φ̃′(H).

Hence, the function ζ is such that ζ(1) = φ̃(1), and ζ ′(H) = φ̃′(H) for every H > 0. It

follows that ζ = φ̃.

We can therefore generate the function φ with the probability measure ν, which is defined

as follows: ν puts weight α on {(−∞, 0)} (and no weight on {−∞} × ([−∞,∞) \ {0})); ν
puts weight 1−α−β on (0,−∞) (and no weight on ([−∞,∞) \ {0})×{−∞}); the remaining

weight is put on R2; The probability measure conditional on being in R2 is given by ν̃. This

does give rise to φ, since the expected utility derived from this choice process is

α logH + βφ̃(H) + 0 = φ(H).

We now construct a measure µ that gives rise to Ψ. Let α = limΦ→0 ΦΨ′(Φ). Define

Ψ̃(Φ) = Ψ(Φ)− α log Φ−Ψ(1), ∀Φ > 0.

Note that Ψ̃(1) = 0. Moreover, G(Φ) ≡ ΦΨ̃′(Φ) is continuous, non-decreasing, and goes to 0

as Φ goes to zero. Hence, G is the cumulative distribution function of a σ-finite measure ρ

over R++.

Let γ : x ∈ R++ 7→ − log x ∈ R. Let λ ≡ γ∗(ρ) be the push-forward measure of ρ, i.e.,

λ(B) = ρ(γ−1(B)) for every Borel set B. Note that, for every δ ∈ R,

λ([δ,∞)) = ρ
(
γ−1([δ,∞))

)
= ρ

(
(0, e−δ]

)
= G(e−δ) <∞.

It follows that λ is σ-finite. Moreover, by continuity of G, we also have that λ({δ}) = 0 for
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every δ ∈ R.

We now use λ to construct µ, a measure over R2. Let

χ : δ ∈ R 7→ (−max(0, δ), δ −max(0, δ)) ∈ R2.

χ is continuous, hence, measurable. Let µ be the push-forward measure of λ: µ ≡ χ∗(λ).

Note that, for every X ∈ R,

µ
(
{(η0, η) ∈ R2 : η +X = η0}

)
= λ ({−X}) = 0,

so the atomless part of Assumption ii-(b) holds for the measure µ.

We also argue that µ is σ-finite. To see this, consider the following sequence of sets:

Bn = (−n,∞)2 for every n ≥ 1. Clearly,
⋃
n≥1B

n = R2. Moreover, for every n ≥ 1,

χ−1(Bn) =
{
δ ∈ R : (−max(0, δ), δ −max(0, δ)) ∈ (−n,∞)2

}
,

= {δ ∈ R : −max(0, δ) > −n and δ −max(0, δ) > −n} ,
= {δ ∈ R+ : −δ > −n and 0 > −n} ∪ {δ ∈ R− : 0 > −n and δ > −n} ,
= [0, n) ∪ (−n, 0] = (−n, n) ⊂ [−n,∞).

Hence, µ(Bn) ≤ λ([−n,∞)) <∞, and µ is σ-finite.

We can now use the change-of-variables formula to prove that (ε0, ε) 7→ max(ε0, log Φ+ε)

is µ-integrable for every Φ > 0:∫
R2

|max(ε0, log Φ + ε)|dµ =

∫
R2

|ε0 + max(0, log Φ + ε− ε0)| dµ,

=

∫
R
|χ1(δ) + max (0, log Φ + χ2(δ)− χ1(δ))| dλ(δ),

=

∫
R
|−max(0, δ) + max (0, log Φ + δ)| dλ(δ),

≡ I(Φ).

If Φ ≥ 1, then

I(Φ) =

∫ 0

− log Φ

| log Φ + δ|dλ(δ) +

∫ ∞
0

| log Φ|dλ(δ),

≤ 2(log Φ)λ ([− log Φ,∞)) <∞.

If Φ < 1, then

I(Φ) =

∫ − log Φ

0

|δ|dλ(δ) +

∫ ∞
− log Φ

| log Φ|dλ(δ),

≤ | log Φ|λ ([0,∞)) <∞.
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Hence, (ε0, ε) 7→ max(ε0, log Φ + ε) is µ-integrable for every H > 0. Moreover, by the

change-of-variables formula,

ζ(Φ) ≡
∫
R2

max(ε0, log Φ + ε)dµ =

∫
R

(−max(0, δ) + max (0, log Φ + δ)) dλ(δ).

In particular, ζ(1) = 0. Moreover, as shown in the first part of the proof, ζ is differentiable,

and

ζ ′(Φ) =
1

Φ
µ
(
{(ε0, ε) ∈ R2 : ε+ log Φ ≥ ε0}

)
,

=
1

Φ
λ ({δ ∈ R : δ + log Φ ≥ 0}) ,

=
1

Φ
G(Φ),

= Ψ̃′(Φ).

It follows that ζ = Ψ̃.

We can then extend the measure µ to [−∞,∞)2 by adding the mass points µ({(−∞, 0)}) =

α and µ({(Ψ(1),−∞)}) = 1. Clearly, the extended µ continues to satisfy Assumption ii-(b).

It is then immediate that, for every Φ > 0,∫
[−∞,∞)2

max (η0, η + log Φ) dµ(η0, η) = α log Φ + Ψ(1) + ζ(Φ),

= α log Φ + Ψ(1) + Ψ̃(Φ),

= Ψ(Φ).

Hence, µ gives rise to Ψ.

Proposition IX implies that a demand system that can be derived from multi-stage dis-

crete/continuous choice is fully characterized by the tuple
(
Ψ, (Φl)l∈L, (hj)j∈N

)
, where the

Ψ, Φ and h functions satisfy conditions (a), (b), and (c) in the statement of the proposition.

This class of demand systems generalizes the one defined in Section I along two dimensions.

First, the nest partition L and the profile of functions (Φl)l∈L allow us to obtain substitu-

tion patterns between products that go beyond those implied by the IIA property. Second,

the function Ψ permits arbitrary substitution patterns between the products in N and the

outside option. In the following, we identify the discrete/continuous choice model (N ,L, µ,
(νl)l∈L, (hj)j∈N ) with the tuple

(
Ψ, (Φl)l∈L, (hj)j∈N

)
it induces. Any such tuple should be

understood as satisfying the conditions in the statement of Proposition IX.

Exogenously priced products. Let
(
Ψ, (Φl)l∈L, (hj)j∈N

)
be a demand system derivable

from multi-stage discrete/continuous choice. Suppose that the products in nest n0 are exo-

genously priced according to (pj)j∈n0 ∈ (0,∞]∞, and let Φ0 = Φn0
(∑

j∈n0 hj(pj)
)
≥ 0. Let
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L′ = L\{n0} and N ′ = N \n0. Then, it is straightforward to show that the demand system

Di(p) = −h′i(pi)Φn′

(∑
j∈n

hj(pj)

)
Ψ′

(
Φ0 +

∑
l∈L′

Φl

(∑
k∈l

hk(pk)

))
, ∀p ∈ RN ′++, ∀i ∈ n ∈ L′

can still be derived from multi-stage discrete/continuous choice. In the following, we denote

this demand system by
(
Ψ, (Φl)l∈L′ , (hj)j∈N ′ ,Φ

0
)
, and we interpret Φ0 as the value of the

outside option.

Examples. If Ψ(Φ) = log(Φ + Φ0), where Φ0 ≥ 0 is a parameter, Φl(H l) = (H l)α for all

l ∈ L, where α ∈ (0, 1) is a parameter, and hj(pj) = ajp
1−σ
j for all j ∈ N , where aj > 0 and

σ > 1 are parameters, then we obtain the nested CES demand system. If Ψ(Φ) = log(Φ+Φ0)

(with Φ0 ≥ 0), Φl(H l) = (H l)α for all l ∈ L (α ∈ (0, 1)), and hj(pj) = e
aj−pj
λ for all j ∈ N

(with aj ∈ R and λ > 1), then we obtain the nested MNL demand system.

Heterogeneity. It is clear that this more general discrete/continuous choice process can

still accommodate the kind of ex post consumer heterogeneity described at the end of

Section I.1, as long as consumers observes their types only after having chosen a product.

As already discussed in that section, if consumers observes their types before deciding which

product to patronize, then the demand system becomes a mixture of equation (xxi), and, in

general, the associated pricing game loses its aggregative properties.

A particular type of ex ante heterogeneity can however be accommodated, where the

h functions take the additively separable form hi(pi, t) = hi(pi) + ti, where t ∈ RN++ is

the consumer’s type. To see this, suppose that each consumer type t’s choice process is

described by the discrete/continuous choice model ((hj(·, t))j∈N , H0). Note that consumers

are heterogeneous both in terms of conditional demand (−h′i(pi)/(hi(pi) + ti)), but also in

terms of choice probabilities ( hi(pi)+ti
H0+

∑
j∈N hj(pj)+tj

). Suppose also that t is drawn from a finite

measure λ with compact support T . It follows from our analysis in Section I.1 that overall

consumer surplus at price vector p is given by

V (p) =

∫
T

log

(
H0 +

∑
j∈N

hj(pj) + tj

)
dλ(t) ≡ Ψ

(∑
j∈N

hj(pj)

)
,

whereas the total demand for product i is given by

Di(p) =

∫
T

−h′i(pi)
H0 +

∑
j∈N hj(pj) + tj

dλ(t) = −h′i(pi)Ψ′
(∑
j∈N

hj(pj)

)
.

Hence, the demand system we obtain coincides with the one that can be derived from the

multi-stage discrete/continuous choice process (Ψ,Φ, (hj)j∈N ), where Ψ has been defined
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above, and Φ is the identity function. Note that, for every Φ > 0,

ΦΨ′(Φ) =

∫
T

Φ

H0 + Φ + tj
dλ(t),

which is non-negative, continuous and non-decreasing in Φ. Hence, (Ψ,Φ, (hj)j∈N ) does

satisfy conditions (a), (b) and (c) in Proposition IX.

VII.2 Representative Consumer Approach

We now show that the demand system (xxi) can also be derived from the maximization of

the utility function of a representative consumer with quasi-linear preferences:

Proposition X. Let D be the demand system generated by the multi-stage discrete/continuous

choice model
(
Ψ, (Φl)l∈L, (hj)j∈N ,Φ

0
)
. D is quasi-linearly integrable. Moreover, v is an in-

direct subutility function for D if and only if there exists a constant α ∈ R such that

v(p) = α + Ψ

(
Φ0 +

∑
l∈L

Φl

(∑
j∈l

hj(pj)

))
, ∀p ∈ RN++.

Proof. Clearly, V : p ∈ RN++ 7→ Ψ
(

Φ0 +
∑

l∈LΦl
(∑

j∈l hj(pj)
))

is a potential for the vector

field D. By Theorem 1 in Nocke and Schutz (2017b), all we need to do is check that V is

convex.

For every l ∈ L and X ∈ R, define Ψ̃(X) = Ψ(expX) and Φ̃l(X) = log(Φl(expX)). Note

that, by conditions (b) and (c) in Proposition IX, Ψ̃′(X) = eX Ψ′(eX) and Φ̃l′(X) = eX Φl′(eX)
Φl(eX)

are both non-negative and non-decreasing. Hence, Ψ̃ and Φ̃l are non-decreasing and convex.

The function V can be reexpressed as follows:

V (p) = Ψ̃

(
log

(
Φ0 +

∑
l∈L

exp

(
Φ̃l

(
log
∑
j∈l

hj(pj)

))))
.

Let l ∈ L. For every j ∈ l, hj is log-convex. It follows that (pj)j∈l 7→
∑

j∈l hj(pj) is

log-convex as well. Hence, (pj)j∈l 7→ Φ̃l
(

log
∑

j∈l hj(pj)
)

, which is the composition of the

non-decreasing and convex function Φ̃l and the convex function (pj)j∈l 7→ log
∑

j∈l hj(pj),

is convex. It follows that (pj)j∈l 7→ exp Φ̃l
(

log
∑

j∈l hj(pj)
)

is log-convex, and that p 7→

Φ0 +
∑

l∈L exp Φ̃l
(

log
∑

j∈l hj(pj)
)

is log-convex as well. Hence, V , which is the composition

of the convex and non-decreasing function Ψ̃ and the convex function

p 7→ log

(
Φ0 +

∑
l∈L

exp Φ̃l

(
log
∑
j∈l

hj(pj)

))
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is convex.

Just like in Section I, any demand system that can be derived from multi-stage dis-

crete/continuous choice can also be derived from quasi-linear utility maximization. Moreo-

ver, the overall consumer surplus function generated under discrete/continuous choice and

the indirect utility function of the associated representative consumer coincide (up to an

additive constant).

VIII Multi-Product Firm Pricing Games and Nested

Demand Systems

VIII.1 Definition of the Pricing Game

A pricing game is a tuple (Ψ, (Φl)l∈L, (hj)j∈N ,Φ
0,F , (cj)j∈N ), where (Ψ, (Φl)l∈L, (hj)j∈N ,Φ

0)

is a nested demand system, as studied in Section VII, F , the set of firms, is a partition of N
containing at least two elements, and (cj)j∈N ∈ RN++ is the marginal costs vector. Throughout

this section, we maintain the assumption that the nest partition L is a coarsening of the firm

partition f . This means that a given nest l can contain products owned by different firms,

but a firm is present in only one nest. In the following, we will often abuse notation, and

write f ∈ l when firm f ’s set of products is contained in nest l.

The profit of firm f ∈ l ∈ L is defined as follows: For every p ∈ (0,∞]N ,

Πf (p) =
∑
j∈f
pj<∞

(pj − cj)(−h′j(pj))Φl′

(∑
g∈l

∑
k∈g

hk(pk)

)
Ψ′

(
Φ0 +

∑
n∈L

Φn

(∑
g∈n

∑
k∈g

hk(pk)

))
,

where we continue to use the notation hj(∞) = limpj→∞ hj(pj).

We make the following assumptions:

Assumption iii. (a) For every j ∈ N , hj is a C3, strictly decreasing, and log-convex

function from R++ to R++.

(b) For every l ∈ L, Φl is a C2 function from R++ to R++. Moreover, ϕl : H l 7→ HlΦl′(Hl)
Φl(Hl)

is strictly positive, non-decreasing, and bounded above by 1.

(c) Ψ is a C2 function from R++ to R, and Φ0 ≥ 0. Moreover, Φ 7→ ΦΨ′(Φ) is strictly

positive and non-decreasing.

(d) For every l ∈ L, Φl′′ ≤ 0.

(e) Ψ′′ < 0.

(f) For every j ∈ N and pj > 0, ι′j(pj) ≥ 0 whenever ιj(pj) > 1.

61



(g) For every f ∈ F , at least one of the following conditions holds true:

– minj∈f infpj>pj ρj(pj) ≥ maxj∈f suppj>pj
θj(pj).

– µ̄f ≤ µ∗(' 2.78), and for every j ∈ f , µ̄j = µ̄f , limpj→∞ hj(pj) = 0 and ρj is

non-decreasing on (p
j
,∞).

– There exist a function hf ∈ Hι, a collection of quality weights (aj)j∈f ∈ Rf
++, and

a marginal cost level cf > 0 such that hj = ajh
f and cj = cf for all j ∈ f . In

addition, ρf is non-decreasing on (p,∞).

(h) For every l ∈ L, ϑl : H l 7→ Hl(−Φl′′(Hl))
Φl′(Hl)

is non-decreasing.

(i) η : Φ 7→ Φ(−Ψ′′(Φ))
Ψ′(Φ)

is non-decreasing.

Assumptions iii–(a)–(c) mean that the demand system can be derived from multi-stage

discrete/continuous choice, and that demand is smooth and never vanishes. Assumptions iii–

(d) and (e) imply that products are substitutes. (In general, products can be complements un-

der multi-stage discrete/continuous choice due to a one-stop shopping effect: When pi decrea-

ses, more consumers turn down the outside option in stages 1 and 3 of the discrete/continuous

choice process; This can end up boosting the demand for product j, despite the fact that

consumers have incentives to substitute towards product i.) Assumption iii–(f) is the same

as Assumption 1 in the paper. It ensures, among other things, that first-order conditions are

sufficient for global optimality. Assumptions iii–(g)–(i) will play a similar role in the analysis.

Note that Assumption iii–(g) is simply the uniqueness condition stated in Theorem II.

VIII.2 Equilibrium Existence, Uniqueness, and Characterization

Fix a pricing game (Ψ, (Φl)l∈L, (hj)j∈N ,Φ
0,F , (cj)j∈N ), where (Ψ, (Φl)l∈L, (hj)j∈N ,Φ

0) satis-

fies Assumption iii. In this section, we show that the pricing game has a unique equilibrium.

The approach is similar to the one in Section A of the paper, in that the equilibrium existence

and uniqueness problem can be re-expressed as a nested fixed point problem. An important

difference with the approach in the paper is that the game is no longer fully aggregative, in

the sense that firm f ’s profit (f ∈ n) now depends not only on the prices it sets and the

aggregator level Φ = Φ0 +
∑

l∈LΦl(
∑

j∈l hj(pj)), but also on the value of the sub-aggregator

Hn =
∑

j∈n hj(pj).

We start by proving the following technical lemma:

Lemma XV. (a) For every l ∈ L and j ∈ l, limpj→∞ pjh
′
j(pj)Φ

l′(hj(pj)) = 0.

(b) For every f ∈ F such that limpj→∞ hj(pj) = 0 for every j ∈ f ,

lim
µf→µ̄f

µf − 1

µf

∑
j∈f hj(rj(µ

f ))∑
j∈f γj(rj(µ

f ))
≥ 1.
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(c) For every l ∈ L, H l 7→ H lΦl′(H l) is strictly increasing.

(d) For every l ∈ L, limHl→0H
lΦl′(H l) = 0.

(e) For every l ∈ L, limHl→0 ϑ
l(H l) < 1.

(f) For every l ∈ L such that limHl→0 Φl(H l) = 0,

lim
Hl→0

ϕl(H l) = 1− lim
Hl→0

ϑl(H l).

(g) η(Φ) ≤ 1 for every Φ > 0.

Proof. (a) Let ξj(pj) = Φl(hj(pj)). Note that, by Assumptions iii–(a) and (b), ξj > 0, ξ′j < 0,

and
d log ξj
dpj

= −
−h′j(pj)
hj(pj)

hj(pj)Φ
l′(hj(pj))

Φl(hj(pj))

is non-decreasing in pj. Hence, ξj is strictly positive, strictly decreasing and log-convex. By

Lemma A–(a),

0 = lim
pj→∞

pjξ
′
j(pj) = lim

pj→∞
pjh

′
j(pj)Φ

l′(hj(pj)).

(b) Assume first that µ̄f <∞. Let f ′ = {j ∈ f : µ̄j = µ̄f}. Then, for µf sufficiently high,

µf − 1

µf

∑
j∈f hj(rj(µ

f ))∑
j∈f γj(rj(µ

f ))
=
µf − 1

µf

∑
j∈f ′ hj(rj(µ

f ))∑
j∈f ′ γj(rj(µ

f ))
.

(Recall that γj(∞) = 0 by Lemma A, and, by assumption, hj(∞) = 0.) Let ε > 0. Recall

that limpj→∞ ρj(pj) = µ̄f

µ̄f−1
for every j ∈ f ′ (Lemma A). Hence, there exists µ < µ̄f such

that, for every j ∈ f ′,
µ̄f − 1

µ̄f
− ε ≤ ρj(rj(µ

f )) ≤ µ̄f − 1

µ̄f
+ ε

for every µf > µ. Rewriting, this means that

γj(rj(µ
f ))

(
µ̄f

µ̄f − 1
− ε
)
≤ hj(rj(µ

f )) ≤ γj(rj(µ
f ))

(
µ̄f

µ̄f − 1
+ ε

)
,

for every µf > µ. Adding up, and dividing by
∑

j∈f ′ γj(rj(µ
f )), we obtain:

µ̄f

µ̄f − 1
− ε ≤

∑
j∈f ′ hj(rj(µ

f ))∑
j∈f ′ γj(rj(µ

f ))
≤ µ̄f

µ̄f − 1
+ ε

for every µf > µ. It follows that limµf→µ̄f
∑
j∈f hj(rj(µ

f ))∑
j∈f γj(rj(µ

f ))
= µ̄f

µ̄f−1
, which proves part (b) when

µ̄f <∞.
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Next, assume instead that µ̄f =∞. By Lemmas VII–IX and Assumptions iii–(f) and (g),

the function µf 7→ µf−1
µf

∑
j∈f hj(rj(µ

f ))∑
j∈f γj(rj(µ

f ))
is monotone, and therefore has a limit as µf tends to

infinity. Moreover, by log-convexity, we have that

µf − 1

µf

∑
j∈f hj(rj(µ

f ))∑
j∈f γj(rj(µ

f ))
≥ µf − 1

µf
−→
µf→∞

1.

(c) This follows immediately from the fact that, by Assumption iii–(b), H lΦl′(H l)/Φl(H l)

is non-decreasing, and Φl(H l) is strictly increasing.

(d) Let ξ(x) = Φl(exp(−x)) for every x > 0. Since x 7→ e−x is log-convex, part (a) implies

that limx→∞ ξ
′(x) = 0. Hence,

lim
Hl→0

H lΦl′(H l) = lim
x→∞

e−x Φl′(e−x) = − lim
x→∞

ξ′(x) = 0.

(e) Assume for a contradiction that

lim
Hl→0

H l(−Φl′′(H l))

Φl′(H l)
≥ 1.

(By Assumption iii–(h), the limit exists.) Then, by Assumption iii–(h), Hl(−Φl′′(Hl))
Φl′(Hl)

≥ 1

for every H l > 0. Put differently, d
dHl

(
H lΦl′(H l)

)
≤ 0. Since Φl′ > 0, it follows that

d
dHl

HlΦl′(Hl)
Φl(Hl)

< 0, which violates Assumption iii–(b).

(f) Note that

1− lim
Hl→0

ϑl(H l) = lim
Hl→0

Φl′(H l) +H lΦl′′(H l)

Φl′(H l)
,

= lim
Hl→0

d
dHl

(
H lΦl′(H l)

)
d
dHl (Φl′(H l))

,

= lim
Hl→0

H lΦl′(H l)

Φl(H l)
,

= lim
Hl→0

ϕl(H l),

where the third line follows by L’Hospital’s rule (by assumption, limHl→0 Φl(H l) = 0; by part

(c), limHl→0H
lΦl′(H l) = 0).

(g) By Assumption iii–(i), ΦΨ′(Φ) is non-decreasing. Therefore, ΦΨ′′(Φ) + Ψ′(Φ) ≥ 0, and

η(Φ) ≤ 1.

As in Section A, it is obvious that each firm sets at least one finite price in any equilibrium:
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Lemma XVI. In any Nash equilibrium (p∗j)j∈N , for every firm f ∈ F , there exists k ∈ f
such that p∗k <∞.

Proof. Straightforward.

Fix a firm f ∈ n ∈ L. DefineH0 =
∑

j∈n\f hj(pj) and Φ0′ = Φ0+
∑

l∈L\{n}Φl(
∑

j∈l hj(pj)).

By Lemma XVI, H0 > 0 or Φ0′ > 0. Define also

Gf ((pj)j∈f , H
0,Φ0′) =

∑
k∈f
pk<∞

(pk − ck)(−h′k(pk))Φn′

(∑
j∈f

hj(pj) +H0

)

×Ψ′

(
Φn

(∑
j∈f

hj(pj) +H0

)
+ Φ0′

)
. (xxii)

Note that Gf ((pj)j∈f , H
0,Φ0′) is the profit of firm f when it sets price vector (pj)j∈f and its

rivals set price vector (pj)j∈N\{f}. We study the following maximization problem:

max
(pj)j∈f∈(0,∞]f

Gf
(
(pj)j∈f , H

0,Φ0′) . (xxiii)

We now extend Lemma C:

Lemma XVII. Maximization problem (xxiii) has a solution. Moreover, if (pj)j∈f solves that

maximization problem, then pj ≥ cj for all j ∈ f , and pk <∞ for some k ∈ f .

Proof. The fact that the firm does not price below cost at any optimum follows immediately

from Assumptions iii–(d) and (e). Since Gf ((∞, . . . ,∞), H0,Φ0′) = 0, setting only infinite

prices cannot be optimal.

To show that the maximization problem has a solution, we now argue that limpf→p̂f G
f (pf ,

H0,Φ0′) = Gf (p̂f , H0,Φ0′) for every p̂f ∈
∏

j∈f [cj,∞]. If the price vector p̂f has at least one

finite component, then this follows from Lemma A–(a) and from taking limits term by term.

Suppose now that p̂f only has infinite components. If H0 > 0, then limits can again be taken

term by term:

lim
pf→p̂f

Gf (pf , H0,Φ0) = lim
pf→p̂f

(∑
j∈f

(pj − cj)(−h′j(pj))

)
× Φn′

(∑
k∈f

lim
pk→∞

hk(pk) +H0

)

×Ψ′

(
Φn

(∑
k∈f

lim
pk→∞

hk(pk) +H0

)
+ Φ0′

)
,

which is indeed equal to zero by Lemma A–(a), and since H0 > 0.
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Assume instead that H0 = 0.12 Then, Φ0′ > 0. Hence, for every pf 6= p̂f ,

Gf (pf , 0,Φ0′) ≤ Ψ′(Φ0′)×
∑
k∈f
pk<∞

pk(−h′k(pk))Φn′ (hk(pk))︸ ︷︷ ︸
−→
pk→∞

0

−→
pf→p̂f

0,

where we have used Lemma XV–(a) and Assumptions iii–(d) and (e).

We can conclude: Gf (·, H0,Φ0′) is continuous over the compact set
∏

j∈f [cj,∞]. There-

fore, that function has a maximum.

The generalized first-order conditions for maximization problem (xxiii) are defined as in

Section A. It is obvious that they are necessary for optimality:

Lemma XVIII. If (pj)j∈f ∈ (0,∞]f solves maximization problem (xxiii), then the genera-

lized first-order conditions are satisfied at (pj)j∈f .

The definition of the common ι-markup property is the same as in Section A. We now

exploit that property to simplify firm f ’s profile of generalized first-order conditions:

Lemma XIX. Suppose that the generalized first-order conditions for maximization pro-

blem (10) hold at price vector (pj)j∈f ∈ (0,∞]f . Then, (pj)j∈f satisfies the common ι-markup

property. The corresponding ι-markup, µf , solves the following equation on interval (1,∞):

µf − 1

µf
=

(∑
j∈f

γj(rj(µ
f ))

)−Φn′′
(∑

j∈f hj(rj(µ
f )) +H0

)
Φn′
(∑

j∈f hj(rj(µ
f )) +H0

)
+ Φn′

(∑
j∈f

hj(rj(µ
f )) +H0

) −Ψ′′
(

Φn
(∑

j∈f hj(rj(µ
f )) +H0

)
+ Φ0′

)
Ψ′
(

Φn
(∑

j∈f hj(rj(µ
f )) +H0

)
+ Φ0′

)
 .

(xxiv)

In addition, the value of the objective function at this profile of prices is equal to

(µf − 1)
(Φn′Ψ′)2

(Φn′)2 (−Ψ′′) + (−Φn′′) Ψ′
.

Proof. Suppose the generalized first-order conditions hold at price vector (pj)j∈f . Assume

without loss of generality that f = {1, . . . , n}, and that there exists 1 ≤ K ≤ n such that

pk <∞ for every 1 ≤ k ≤ K, and pk =∞ for every K+1 ≤ k ≤ n. For every k ∈ {1, . . . , K},
the derivative of firm f ’s profit with respect to pk, evaluated at (pj)j∈f , is given by:

∂Gf

∂pk
= Ψ′Φn′ (−h′k − (pk − ck)h′′k) +

(
K∑
j=1

(pj − cj)(−h′j)

)
h′k
(
Ψ′′(Φn′)2 + Ψ′Φn′′) ,

12Note that this can happen only if firm f owns all the products in nest n.
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= (−h′k)Ψ′Φn′
(

1− νk −Gf Ψ′′(Φn′)2 + Ψ′Φn′′

(Ψ′Φn′)2

)
,

which must be equal to zero, since the generalized first-order conditions hold at (pj)j∈f .

Hence, there exists µf ∈ (1,max1≤i≤K µ̄i) such that νk(pk) = µf (or, equivalently, pk =

rk(µ
f )) for every k ∈ {1, . . . , K}. This µf is pinned down by

µf = 1− Ψ′′(Φf ′)2 + Ψ′Φf ′′

(Ψ′Φf ′)2 Gf
(
(pj)j∈f , H

0,Φ0′) , (xxv)

where Ψ and its derivatives are evaluated at Φ0′ + Φn(H0 +
∑

j∈f hj(pj)), and Φn and its

derivatives are evaluated at H0 +
∑

j∈f hj(pj).

Assume for a contradiction that µf < µ̄i for some i ∈ {K + 1, . . . , N}. Let G̃f (x)

be the profit of firm f when it prices product i at x, other products are priced according

to (pj)j∈f , and other firms’ prices give rise to Φ0′ and H0. We have already shown that

limx→∞ G̃
f (x) = Gf ((pj)j∈f , H

0,Φ0′) (see the proof of Lemma XVII). Moreover,

G̃f ′(x) = (−h′i)Ψ′Φn′
(

1− νi(x)− G̃f (x)
Ψ′′(Φn′)2 + Ψ′Φn′′

(Ψ′Φn′)2

)
, (xxvi)

where Ψ and its derivatives are evaluated at Φ0′+Φn(H0+hi(x)+
∑

j∈f\{i} hj(pj)), and Φn and

its derivatives are evaluated at H0 + hi(x) +
∑

j∈f\{i} hj(pj). We know from condition (xxv)

that, as x tends to ∞, the term in parentheses in equation (xxvi) goes to

(1− µ̄i)− (1− µf ) = µf − µ̄i < 0.

It follows that G̃f is strictly decreasing for x high enough. Hence, there exists x < ∞ such

that G̃f (x) > G̃f (∞). It follows that the generalized first-order conditions do not hold at

(pj)j∈f , a contradiction.

Hence, if the generalized first-order conditions hold at (pj)j∈f , then there exists µf ∈
(1, µ̄f ) such that pj = rj(µ

f ) for every j ∈ f , and

µf = 1−Gf Ψ′′(Φf ′)2 + Ψ′Φf ′′

(Ψ′Φf ′)2 ,

= 1−
∑
j∈f
µ̄j<µ̄

f

(pj − cj)(−h′j)
Ψ′′(Φf ′)2 + Ψ′Φf ′′

Ψ′Φf ′ ,

= 1− µf
(∑
j∈f

γj

)(
Φf ′Ψ

′′

Ψ′
+

Φf ′′

Φf ′

)
,

This is equivalent to equation (xxiv). The result on the value of the objective function follows

immediately from equation (xxv).
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We now prove the analogue of Lemma G:

Lemma XX. Equation (xxiv) has a unique solution on the interval (1,∞).

Proof. To see why equation (xxiv) has a solution, recall that maximization problem (xxiii)

has a solution p∗ by Lemma XVII, that p∗ satisfies the common ι-markup property by

Lemma XVIII, and that the corresponding ι-markup necessarily solves equation (xxiv) by

Lemma XIX.

To prove uniqueness, note that equation (xxiv) can be rewritten as follows:

µf − 1

µf

∑
j∈f hj∑
j∈f γj︸ ︷︷ ︸

A

=
Hf

Hn

HnΦn′(Hn)

Φn(Hn)

Φn

Φ

Φ(−Ψ′′(Φ))

Ψ′(Φ)
+
Hf

Hn

Hn(−Φn′′(Hn))

Φn′(Hn)
,

=
Hf

Hn︸︷︷︸
B

ϕn(Hn)︸ ︷︷ ︸
C

Φn

Φ︸︷︷︸
D

η(Φ)︸︷︷︸
E

+ϑn(Hn)︸ ︷︷ ︸
F

 , (xxvii)

where the hj and γj functions are evaluated at rj(µ
f ), Hn = Hf + H0 is the nest-level sub-

aggregator, Hf =
∑

j∈f hj if firm f ’s contribution to that sub-aggregator, Φ = Φ0′+Φn is the

aggregator, and Φn is evaluated at Hn. We claim that the left-hand side of equation (xxvii)

is strictly increasing in µf , whereas the right-hand side is strictly decreasing in µf . To see

this, note that:

• Term A is strictly increasing in µf , by Lemmas VII–IX and Assumptions iii–(f) and

(g).

• Term B is non-increasing in µf , since that term is weakly increasing in Hf (and strictly

so if H0 > 0), and Hf =
∑

j∈f hj(rj(µ
f )) is strictly decreasing, by Assumptions iii–(a)

and (f) and Lemma E.

• Term C is non-increasing in µf , since ϕn is non-decreasing (Assumption iii–(h)), and,

as mentioned above, Hf is strictly decreasing in µf .

• Term D is non-increasing in µf , since that term is weakly increasing in Φn (and strictly

so if Φ0′ > 0), which, by Assumption iii–(b), is non-decreasing in Hn = Hf +H0, which

is strictly decreasing in µf .

• Term E is non-increasing in µf , since that term is non-decreasing in Φ by Assump-

tion iii–(i), and Φ = Φn + Φ0′ is strictly decreasing in µf .

• Term F is non-increasing in µf , since that term is non-decreasing in Hn by Assump-

tion iii–(h), and Hn is strictly decreasing in µf .

• (Since terms B, C, D, and E are all strictly positive, and terms B and/or D are strictly

decreasing, we do obtain that the right-hand side is strictly decreasing.)
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Hence, equation (xxvii) has a unique solution.

This concludes our study of maximization problem (xxiii):

Lemma XXI. Maximization problem (xxiii) has a unique solution. The generalized first-

order conditions associated with this maximization problem are necessary and sufficient for

global optimality. The optimal price vector (which contains at least one finite component)

satisfies the common ι-markup property, and the corresponding ι-markup, µf∗, is the unique

solution of equation (xxiv). The maximized value of the objective function is

(µf∗ − 1)
(Φn′Ψ′)2

(Φn′)2 (−Ψ′′) + (−Φn′′) Ψ′
,

where Ψ and its derivatives are evaluated at Φ0′ + Φn(H0 +
∑

j∈f hj(rj(µ
f∗))), and Φn and

its derivatives are evaluated at H0 +
∑

j∈f hj(rj(µ
f∗).

Proof. This follows immediately from Lemmas XVII–XX.

We now turn our attention to the equilibrium existence problem. The price vector p is a

Nash equilibrium if and only if, for every n ∈ L and f ∈ n, (pj)j∈f maximizes

Gf

·, ∑
k∈n\{f}

hk(pk), Φ0 +
∑

l∈L\{n}

Φl

(∑
f∈l

∑
k∈f

hk(pk)

) .

By Lemma XXI, this is equivalent to the existence of a profile of ι-markups (µf )f∈F such

that for every n ∈ L and f ∈ n,

µf − 1

µf
1∑

j∈f γj(rj(µ
f ))

=
−Φn′′

(∑
g∈n
∑

j∈g hj(rj(µ
g))
)

Φn′
(∑

g∈n
∑

j∈g hj(rj(µ
g))
)

+ Φn′

(∑
g∈n

∑
j∈g

hj(rj(µ
g))

) −Ψ′′
(

Φ0 +
∑

l∈LΦl
(∑

g∈l
∑

j∈g hj(rj(µ
g))
))

Ψ′
(

Φ0 +
∑

l∈LΦl
(∑

g∈l
∑

j∈g hj(rj(µ
g))
)) .

This is, in turn, equivalent to the existence of an aggregator level Φ, a curvature level Q, a

profile of sub-aggregator levels (H l)l∈L, and a profile of ι-markups (µf )f∈F such that

Φ = Φ0 +
∑
l∈L

Φl(H l),

Q =
−Ψ′′(Φ)

Ψ′(Φ)
,

H l =
∑
f∈l

∑
j∈f

hj(rj(µ
f )), ∀l ∈ L, (xxviii)

69



µf − 1

µf
1∑

j∈f γj(rj(µ
f ))

=
−Φl′′(H l)

Φl′(H l)
+ Φl′(H l)Q, ∀l ∈ L, and f ∈ l. (xxix)

We adopt a nested fixed-point approach to solve this problem. We first show that, for

every Q > 0 and l ∈ L, there exists a unique pair ((mf (Q))f∈l, H
l(Q)) that jointly solves

equations (xxviii) and (xxix). We then show that the aggregate fitting-in function Φ 7→
Φ0 +

∑
l∈LΦl

(
H l
(
−Ψ′′(Φ)
Ψ′(Φ)

))
has a unique fixed point.

Lemma XXII. For every l ∈ L and f ∈ l, for every X ≥ 0, equation

µf − 1

µf
1∑

j∈f γj(rj(µ
f ))

= X, (xxx)

has a unique solution in µf , denoted m̃f (X). m̃f is continuous and strictly increasing in X.

Proof. Since the left-hand side of equation (xxx) is continuous and strictly increasing in µf ,

tends to 0 as µf tends to 1, and tends to ∞ as µf tends to µ̄f (see Lemma A), whereas

the right-hand side is non-negative, this equation has a unique solution. The continuity and

monotonicity of m̃f can then be established by using the same argument as in the proof of

Lemma I.

We can now define mf (Q) and Hm(Q):

Lemma XXIII. For every l ∈ L, the equation

H l =
∑
f∈l

∑
j∈f

hj

(
rj

(
m̃f

(
−Φl′′(H l)

Φl′(H l)
+ Φl′(H l)Q

)))
(xxxi)

has a unique solution, denoted H l(Q). H l(Q) and mf (Q) ≡ m̃f
(
−Φl′′(Hl)
Φl′(Hl)

+ Φl′(H l)Q
)

are

continuous. Moreover, H l(·) is strictly decreasing, and mf (·) is strictly increasing.

Proof. Define the sub-aggregate share function

Ωl(Q,H l) =
1

H l

∑
f∈l

∑
j∈f

hj

(
rj

(
m̃f

(
−Φl′′(H l)

Φl′(H l)
+ Φl′(H l)Q

)))
.

Our goal is to show that the equation Ωl(Q,H l) = 1 has a unique solution in H l. We first

show that a solution exists. By Lemma XXII, Ωl is continuous.

We first study the behavior of Ωl when H l is in the neighborhood of infinity. By

Lemma XV, H lΦ′(H l) is non-decreasing. Hence, H lΦl′′(H l) + Φl′(H l) ≥ 0. Therefore,

−Φl′′(H l)

Φl′(H l)
≤ 1

H l
−→
Hl→∞

0.

70



Moreover, by Assumption iii–(b) and (d), Φl′ is non-increasing and strictly positive. The-

refore, λ = limHl→∞Φl′(H l) exists, and is finite and non-negative. By continuity of m̃f , it

follows that

lim
Hl→∞

m̃f

(
−Φl′′(H l)

Φl′(H l)
+ Φl′(H l)Q

)
= m̃f (λQ) < µ̄f .

Hence,

Ωl(Q,H l) −→
Hl→∞

0×
∑
f∈l

∑
j∈f

hj
(
rj
(
m̃f (λQ)

))
= 0.

We now study the behavior of Ωl when H l is in the neighborhood of zero. Assume first

that, for some firm f ∈ l, m̃f
(
−Φl′′(Hl)
Φl′(Hl)

+ Φl′(H l)Q
)

does not tend to µ̄f as H l tends to zero.

Then, there exist a sequence (H l
n)n≥0 and a ι-markup µ < µ̄f such that H l

n −→
n→∞

0 and

m̃f

(
−Φl′′(H l

n)

Φl′(H l
n)

+ Φl′(H l
n)Q

)
≤ µ

for every n. It follows that

Ωl(Q,H l
n) ≥

∑
j∈f hj(rj(µ))

H l
n

−→
n→∞

∞.

By the same token, if limpj→∞ hj(pj) > 0 for some j ∈ l, then Ωl(Q,H l) is bounded below

by limpj→∞ hj(pj)/H
l, and therefore tends to +∞ as H l tends to zero.

Finally, assume that limpj→∞ hj(pj) = 0 for every j ∈ l, and m̃f
(
−Φl′′(Hl)
Φl′(Hl)

+ Φl′(H l)Q
)

−→
Hl→0

µ̄f for every f ∈ l. Note that

Ωl(Q,H l) =
∑
f∈l

1

H l

∑
j∈f

hj,

=
∑
f∈l

1

H l

−Φl′′(Hl)
Φl′(Hl)

+ Φl′(H l)Q

−Φl′′(Hl)
Φl′(Hl)

+ Φl′(H l)Q

∑
j∈f

hj,

=
∑
f∈l

m̃f − 1

m̃f

1∑
j∈f γj

1

ϑl(H l) +H lΦl′(H l)Q

(∑
j∈f

hj

)
,

=
1

ϑl(H l) +H lΦl′(H l)Q

∑
f∈l

m̃f − 1

m̃f

∑
j∈f hj∑
j∈f γj

.

By Lemma XV, as H l tends to 0, the term 1
ϑl(Hl)+HlΦl′(Hl)Q

tends to limHl→0 1/ϑl(H l), which

is strictly greater than 1. Moreover, by Lemma XV, for every firm f , the term m̃f−1
m̃f

∑
j∈f hj∑
j∈f γj

tends to a limit that is greater or equal to 1. It follows that limHl→0 Ωl(Q,H l) > 1. Therefore,

equation (xxxi) has a solution.
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We now prove that the solution is unique. We do so by showing that Ωl(Q, ·) is strictly

decreasing. Let 0 < H l < H l′. Put

X =
−Φl′′(H l)

Φl′(H l)
+ Φl′(H l)Q and X ′ =

−Φl′′(H l′)

Φl′(H l′)
+ Φl′(H l′)Q.

Suppose first that X ≤ X ′. Then,

Ωl(Q,H l) =
1

H l

∑
f∈l

∑
j∈f

hj(rj(m̃
f (X))),

>
1

H l′

∑
f∈l

∑
j∈f

hj(rj(m̃
f (X))),

≥ 1

H l′

∑
f∈l

∑
j∈f

hj(rj(m̃
f (X ′))),

= Ωl(Q,H l′),

where the third line follows by Lemma XXII.

Assume instead that X > X ′. Then,

Ωl(Q,H l) =
1

ϑl(H l) +H lΦl′(H l)Q

∑
f∈l

m̃f (X)− 1

m̃f (X)

∑
j∈f hj(rj(m̃

f (X)))∑
j∈f γj(rj(m̃

f (X)))
,

>
1

ϑl(H l′) +H l′Φl′(H l′)Q

∑
f∈l

m̃f (X)− 1

m̃f (X)

∑
j∈f hj(rj(m̃

f (X)))∑
j∈f γj(rj(m̃

f (X)))
,

>
1

ϑl(H l′) +H l′Φl′(H l′)Q

∑
f∈l

m̃f (X ′)− 1

m̃f (X ′)

∑
j∈f hj(rj(m̃

f (X ′)))∑
j∈f γj(rj(m̃

f (X ′)))
,

= Ωl(Q,H l′),

where the second line follows by Lemma XV and Assumption iii–(h), and the third line

follows from Lemmas VII–IX and Assumptions iii–(f) and (g).

Hence, Ωl(Q, ·) is strictly decreasing, and equation (xxxi) has a unique solution. The

continuity of the solution H l(Q) can then be established by using the same argument as in

the proof of Lemma I. Since mf (Q) = m̃f
(
−Φl′′(Hl)
Φl′(Hl)

+ Φl′(H l)Q
)

is the composition of two

continuous functions, that function is continuous as well.

Finally, we derive the monotonicity properties of H l(·) and mf (·). Let 0 < Q < Q′. Then,

by monotonicity of m̃f for every f , we have that Ωl(Q,H l) > Ωl(Q′, H l). Since Ωl is strictly

decreasing in H l, this implies that H l(Q) > H l(Q′). Assume for a contradiction that

X ≡ −Φl′′(H l(Q))

Φl′(H l(Q))
+ Φl′(H l(Q))Q ≥ −Φl′′(H l(Q′))

Φl′(H l(Q′))
+ Φl′(H l(Q′))Q′ ≡ X ′.
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Then,

H l(Q) =
∑
f∈l

∑
j∈f

hj
(
rj(m̃

f (X))
)
,

≤
∑
f∈l

∑
j∈f

hj
(
rj(m̃

f (X ′))
)
,

= H l(Q′),

which is a contradiction. Hence, X < X ′, and, for every f ∈ l,

mf (Q) = m̃f (X) < m̃f (X ′) = mf (Q′).

We can finally solve the outer fixed point problem. Define

Ω(Φ) =
1

Φ

(
Φ0 +

∑
l∈L

Φl

(
H l

(
−Ψ′′(Φ)

Ψ′(Φ)

)))
.

Lemma XXIV. There exists a unique Φ∗ such that Ω(Φ∗) = 1. Moreover, Ω is strictly

decreasing.

Proof. We first show that a solution exists. Ω is continuous. Moreover, mf (·) is bounded

below by 1 for every m ∈M and f ∈ m. Hence,

Ω(Φ) ≤ 1

Φ

(
Φ0 +

∑
l∈M

Φl

(∑
f∈l

∑
j∈f

hj(rj(1))

))
−→
Φ→∞

0.

If λn = limHn→0 Φn(Hn) > 0 for some n ∈ L, or λj = limpj→∞ hj(pj) > 0 for some j ∈ l ∈ L,

or Φ0 > 0, then Ω(Φ) ≥ λn/Φ, or Ω(Φ) ≥ Φl(λj)/Φ, or Ω(Φ) ≥ Φ0/Φ for every Φ > 0. Hence,

limΦ→0 Ω(Φ) =∞. Assume instead that Φ0 = 0, limHn→0 Φn(Hn) = 0, and limpj→∞ hj(pj) =

0 for every n ∈M and j ∈ N .

We distinguish two cases. Assume first that −Ψ′′(Φ)
Ψ′(Φ)

does not go to infinity as Φ goes to

0. There exist a sequence (Φ̃n)n≥0 and an upper bound M > 0 such that Φ̃n −→
n→∞

0 and

Qn =
−Ψ′′(Φ̃n)

Ψ′(Φ̃n)
< M, ∀n ≥ 0.

Hence, by monotonicity of H l(·), H l(Qn) > H l(M), for every l ∈ L. Therefore,

Ω(Φ̃n) ≥ 1

Φ̃n

∑
l∈L

H l(M) −→
n→∞

∞.

Hence, Ω(Φ) > 1 for some Φ > 0.

Next, assume instead that −Ψ′′(Φ)
Ψ′(Φ)

does go to infinity as Φ goes to 0. Then, there exists
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a strictly decreasing sequence (Φ̃n)n≥0 such that (Qn)n≥0 =
(
−Ψ′′(Φ̃n)

Ψ′(Φ̃n)

)
n≥0

is non-decreasing,

and Qn −→
n→∞

∞. The monotonicity properties derived in Lemma XXIII imply that, for every

l ∈ L and f ∈ l, the sequences
(
H l(Qn)

)
n≥0

and
(
mf (Qn)

)
n≥0

are respectively non-increasing

and non-decreasing. Those sequences therefore have limits. It is then straightforward to use

equations (xxviii) and (xxix) to show that limn→∞H
l(Qn) = 0 and limn→∞m

f (Qn) = µ̄f .

Note that

Ω(Φ̃n) =
Qn

η(Φ̃n)

∑
l∈L

Φl(H l(Qn)),

=
Qn

η(Φ̃n)

∑
l∈L

1

ϕl(H l(Qn))
H l(Qn)Φl′(H l(Qn)),

=
Qn

η(Φ̃n)

∑
l∈L

1

ϕl(H l(Qn))
Φl′(H l(Qn))

∑
f∈l

∑
j∈f

hj(rj(m
f (Qn))),

=
1

η(Φ̃n)

∑
l∈L

1

ϕl(H l(Qn))

∑
f∈l

Φl′(H l(Qn))Qn
∑
j∈f

hj(rj(m
f (Qn))),

=
1

η(Φn)

∑
l∈L

1

ϕl(H l(Qn))

∑
f∈l

(
mf (Qn)− 1

mf (Qn)

∑
j∈f hj(rj(m

f (Qn)))∑
j∈f γj(rj(m

f (Qn)))

−
∑
j∈f

hj(rj(m
f (Qn)))

−Φl′′(H l(Qn))

Φl′(H l(Qn))

)
,

=
1

η(Φn)

∑
l∈L

1

ϕl(H l(Qn))

((∑
f∈l

mf (Qn)− 1

mf (Qn)

∑
j∈f hj(rj(m

f (Qn)))∑
j∈f γj(rj(m

f (Qn)))

)
− ϑl(H l(Qn))

)
,

≥
∑
l∈L

1

ϕl(H l(Qn))

((∑
f∈l

mf (Qn)− 1

mf (Qn)

∑
j∈f hj(rj(m

f (Qn)))∑
j∈f γj(rj(m

f (Qn)))

)
− ϑl(H l(Qn))

)
,

where we have used equation (xxix) to obtain the fifth line, and Lemma XV to obtain the

last line. Since mf (Qn) −→
n→∞

µ̄f and H l(Qn) −→
n→∞

0 for every l and f , we can use Lemma XV

to conclude that the expression in the last line has a limit as n tends to infinity, and that

this limit is bounded below by

∑
l∈L

(∑
f∈l 1

)
− limHl→0 ϑ

l(H l)

limHl→0 ϕl(H l)
,

which, by Lemma XV–(f), and since there are at least two firms in the industry, is strictly

greater than 1. It follows that the equation Ω(Φ) = Φ has a solution.

To prove uniqueness, we show that Ω is strictly decreasing. Let Φ′ > Φ > 0. Put
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Q = −Ψ′′(Φ)
Ψ′(Φ)

and Q′ = −Ψ′′(Φ′)
Ψ′(Φ′)

. If Q′ ≥ Q, then

Ω(Φ) =
1

Φ

(
Φ0 +

∑
l∈L

Φl(H l(Q))

)
,

>
1

Φ′

(
Φ0 +

∑
l∈L

Φl(H l(Q))

)
,

≥ 1

Φ′

(
Φ0 +

∑
l∈L

Φl(H l(Q′))

)
,

= Ω(Φ′).

where we have used the monotonicity of H l(·) to obtain the third line. If instead Q′ < Q,

then, H l(Q) < H l(Q′), and mf (Q) > mf (Q′). It follows that

Ω(Φ) =
Φ0

Φ
+

1

η(Φ)

∑
l∈L

1

ϕl(H l(Q))

((∑
f∈l

mf (Q)− 1

mf (Q)

∑
j∈f hj(rj(m

f (Q)))∑
j∈f γj(rj(m

f (Q)))

)
− ϑl(H l(Q))

)
,

>
Φ0

Φ′
+

1

η(Φ′)

∑
l∈L

1

ϕl(H l(Q′))

((∑
f∈l

mf (Q′)− 1

mf (Q′)

∑
j∈f hj(rj(m

f (Q′)))∑
j∈f γj(rj(m

f (Q′)))

)
− ϑl(H l(Q′))

)
,

= Ω(Φ′),

where we have used the monotonicity properties of ϕl, ϑl, η (Assumptions iii–(b), (h) and

(i)), and µf 7→ µf−1
µf

∑
j∈f hj(rj(µ

f ))∑
j∈f γj(rj(µ

f ))
(Lemmas VII–IX and Assumptions iii–(f) and (g)) to obtain

the second line. (Recall that the term in the sum over l is proportional to the contribution

of nest l to the industry aggregator, and is therefore strictly positive.) Hence, Ω is strictly

decreasing.

We can conclude:

Theorem III. Let (Ψ, (Φl)l∈L, (hj)j∈N ,Φ
0,F , (cj)j∈N ) be a pricing game satisfying Assump-

tion iii. The pricing game has a unique equilibrium. The equilibrium aggregator level Φ∗ is

the unique fixed point of the aggregate fitting-in function. In equilibrium, firm f ∈ n sets a

ι-markup of µf∗ = mf
(
−Ψ′′(Φ∗)
Ψ′(Φ∗)

)
, and earns a profit of

(µf∗ − 1)
(Φn′Ψ′)2

(Φn′)2 (−Ψ′′) + (−Φn′′) Ψ′
,

where the function Ψ and its derivatives are evaluated at

Φ0 +
∑
l∈L

Φl

(∑
g∈l

∑
j∈g

hj

(
rj

(
mg

(
−Ψ′′(Φ∗)

Ψ′(Φ∗)

))))
,

75



and the function Φn and its derivatives are evaluated at

∑
g∈n

∑
j∈g

hj

(
rj

(
mg

(
−Ψ′′(Φ∗)

Ψ′(Φ∗)

)))
.

The equilibrium price of product j ∈ f is rj

(
mf
(
−Ψ′′(Φ∗)
Ψ′(Φ∗)

))
.

VIII.3 Discussion

Examples. Examples of functional forms satisfying Assumptions iii–(a), (f) and (g) were

already given in Section VI.2. Examples of Φl functions satisfying Assumptions iii–(b),

(d) and (h) include Φl(H l) = β(H0 + H l)α, where β > 0, H0 ≥ 0 and α ∈ (0, 1] are

parameters. Examples of Ψ functions satisfying Assumptions iii–(c), (e), and (i) include

Ψ(Φ) = β log(Φ + Φ0) and Ψ(Φ) = β(Φ + Φ0)α, where β > 0, Φ0 ≥ 0 and α ∈ (0, 1) are

parameters.

Note that nested CES (hi(pi) = aip
1−σ
i , Φl(H l) = βl(H l)α, Ψ(Φ) = log(Φ + Φ0)) and

MNL (hi(pi) = exp((ai − pi)/λ), Φl(H l) = βl(H l)α, Ψ(Φ) = log(Φ + Φ0)) demands satisfy

Assumption iii. Hence, a pricing game with nested CES or MNL demands has a unique

equilibrium, provided that the firm partition is a filtration of the nest partition.

On comparative statics and the monotonicity of fitting-in functions. As in the

paper, we can study the impact of entry or a unilateral trade liberalization by performing

comparative statics on the parameter Φ0. Suppose that Φ0 increases to Φ0′ > Φ0. Then, the

aggregate share function Ω(·), defined in Section VIII.2, shifts upward. Since that function is

strictly decreasing, it follows that the equilibrium aggregator level Φ∗ increases to Φ∗′ > Φ∗.

Hence, it is still the case that consumers benefit from entry and trade liberalization. (Recall

from Section VII that consumer surplus is given by Ψ(Φ).)

We now use the fitting-in function mf to study the impact of an increase in Φ0 on firm

f ’s equilibrium behavior. We have shown in Lemma XXIII that mf is a strictly increasing

function of Q(Φ) ≡ −Ψ′′(Φ)/Ψ′(Φ). Hence, firm f reacts to the increase in Φ0 by lowering

its ι-markup, reducing the prices of its products (recall that rj is increasing in µf for every

j), and broadening its scope if and only if Q(Φ∗) > Q(Φ∗′). If Ψ is the logarithm (as in

the paper) or a power function, then the function Q(·) is strictly decreasing on R++, and

all the firms therefore respond to entry and trade liberalization by lowering their prices and

ι-markups and by introducing new products.

It is however easy to construct a function Ψ that satisfies Assumptions iii–(c), (e), and

(i), such that the associated function Q(·) is not globally decreasing. An example of such a

function is Ψ(Φ) = arsinh(Φ). Note that ΦΨ′(Φ) = Φ/
√

1 + Φ2 is strictly positive and strictly

increasing, and −ΦΨ′′(Φ)/Ψ′(Φ) = Φ2/(1+Φ2) is non-decreasing, so Assumptions iii–(c), (e),

and (i) do hold. However, −Ψ′′(Φ)/Ψ′(Φ) = Φ/(1 + Φ2) is strictly increasing on (0, 1), and

strictly decreasing on (1,∞). With such a function Ψ, the fitting-in function mf is therefore
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hump-shaped in Φ for every firm f . Trade liberalization and entry can therefore have a

non-monotonic impact on prices, ι-markups, and the set of active products.

More generally, it is straightforward to show, by integrating a second-order differential

equation, that the C2 function Ψ : R++ −→ R satisfies Assumptions iii–(c), (e), and (i) if

and only if there exist a continuous and non-decreasing function η : R++ −→ (0, 1] and two

constants of integration (α, β) ∈ R++ × R such that

Ψ(x) = α

∫ x

1

exp

(
−
∫ u

1

η(t)

t
dt

)
du+ β.

The associated function Q is then given by Q(x) = η(x)/x. Hence, Q is locally strictly

increasing if and only if the elasticity of η (locally) strictly exceeds unity.13

Finally, we discuss the impact of an increase in Φ0 on equilibrium profits. The analysis

is more involved than in the paper, because a firm’s equilibrium profit is no longer equal

to its ι-markup minus 1. Assume that Q(Φ∗) > Q(Φ∗′). Let f ∈ l ∈ L. Recall from

Section VIII.2 that firm f ’s profit can be written as Gf ((pj)j∈f , H
0,Υ0), where H0 denotes

the contribution of firm f ’s rivals within nest n to the nest-level sub-aggregator Hn, and Υ0

is the contribution of firm f ’s rivals outside nest n (including the outside option Φ0) to the

industry-level aggregator Φ. Since products are substitutes, Gf is strictly decreasing in H0

and Υ0. Moreover, since Q(Φ∗) > Q(Φ∗′), all the firms respond to the increase in Φ0 by

lowering their ι-markups. It follows that the equilibrium values of H0 and Υ0 go up as the

value of the outside option Φ0 increases to Φ0′. A standard revealed profitability argument

allows us to conclude that firm f ’s equilibrium profit decreases.

If instead Q(Φ∗) < Q(Φ∗′), then firm f may end up benefiting from the fact that, after

Φ0 increases, its rivals in nest n set higher prices. This countervailing effect may end up

offsetting the direct negative effect on firm f ’s profit of the increase in Φ0. If n = {f}, i.e.,

if firm f is the only firm present in nest n, then this countervailing effect does not exist, and

firm f unambiguously suffers from the increase in Φ0. We provide a formal argument below.

We summarize these insights in a proposition:

Proposition XI. Let (Ψ, (Φl)l∈L, (hj)j∈N ,Φ
0,F , (cj)j∈N ) be a pricing game satisfying As-

sumption iii. An increase in Φ0

• raises equilibrium consumer surplus,

• induces firms to lower their ι-markups and prices, and expand the set of active products

if the equilibrium Q decreases,

• induces firms to increase their ι-markups and prices, and prune the set of active products

if the equilibrium Q increases,

13Note that Q cannot be globally increasing, as this would imply that η would eventually leave the interval
(0, 1]).
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• lowers firm f ’s equilibrium profit if the equilibrium Q decreases, or if firm f has no

rival in its nest.

Proof. All that is left to do is show that, if firm f has no rival in its nest and Q(Φ∗) < Q(Φ∗′),

then firm f ’s equilibrium profit decreases as Φ0 increases. Let

Πf,mc(µf ) =
∑
k∈f

(rk(µ
f )− ck)(−h′k(rk(µf )))Φn′

(∑
j∈f

hj(rj(µ
f ))

)
,

= µf
∑
k∈f

γk(rk(µ
f ))Φn′

(∑
j∈f

hj(rj(µ
f ))

)

be firm f ’s profit (up to a multiplicative constant) under monopolistic competition when it

sets the ι-markup µf . Let µf ∈ [1, µf ) such that µ̄f 6= µ̄j for every j ∈ f . Let f ′ be the set

of j’s in f such that µ̄j > µf . Then,

∂ log Πf,mc

∂µf
=

1

µf
+

∑
j∈f ′ r

′
j(µ

f )γ′j(rj(µ
f ))∑

j∈f ′ γj(rj(µ
f ))

+
Φn′′

(∑
j∈f hj(rj(µ

f ))
)

Φn′
(∑

j∈f hj(rj(µ
f ))
) ∑

j∈f ′
r′j(µ

f )h′j(rj(µ
f )),

=
1

µf
+

∑
j∈f ′ r

′
j(µ

f )γ′j(rj(µ
f ))∑

j∈f ′ γj(rj(µ
f ))

− ϑn
(∑
j∈f

hj(rj(µ
f ))

)∑
j∈f ′ r

′
j(µ

f )h′j(rj(µ
f ))∑

j∈f hj(rj(µ
f ))

,

=

∑
j∈f ′ r

′
j(µ

f )h′j(rj(µ
f ))∑

j∈f ′ γj(rj(µ
f ))

(
µf − 1

µf
− ϑn

(∑
j∈f

hj(rj(µ
f ))

)∑
j∈f ′ γj(rj(µ

f ))∑
j∈f hj(rj(µ

f ))

)
,

=

∑
j∈f ′ r

′
j(µ

f )(−h′j(rj(µf )))∑
j∈f ′ γj(rj(µ

f ))︸ ︷︷ ︸
>0

(
ϑn

(∑
j∈f

hj(rj(µ
f ))

) ∑
j∈f γj(rj(µ

f ))∑
j∈f hj(rj(µ

f ))
− µf − 1

µf

)
,

where the third line follows by Lemma E. If ϑn
(∑

j∈f hj(rj(1))
)

= 0, then, by Assump-

tion iii–(i), ϑn
(∑

j∈f hj(rj(µ
f ))
)

= 0 for every µf ≥ 1. Hence, ∂ log Πf,mc

∂µf
(µf ) < 0 for every

µf ∈ (1, µ̄f ) \ {µ̄i}i∈f , and Πf,mc is strictly decreasing on [µf,mc, µ̄f ) ≡ [1, µ̄f ). If instead

ϑn
(∑

j∈f hj(rj(1))
)
> 0, then, for every µf > 1,

∂ log Πf,mc

∂µf
=

∑
j∈f ′ r

′
j(µ

f )(−h′j(rj(µf )))∑
j∈f ′ γj(rj(µ

f ))

µf − 1

µf

×

(
µf

µf − 1

∑
j∈f γj(rj(µ

f ))∑
j∈f hj(rj(µ

f ))
ϑn

(∑
j∈f

hj(rj(µ
f ))

)
− 1

)
,

Using Assumption iii and the argument in the proof of Lemma XX allows us to conclude

78



that there exists a unique µf ∈ (1, µ̄f ) such that

µf

µf − 1

∑
j∈f γj(rj(µ

f ))∑
j∈f hj(rj(µ

f ))
ϑn

(∑
j∈f

hj(rj(µ
f ))

)
= 1.

Denote this µf by µf,mc. Then, by monotonicity of µf

µf−1

∑
j∈f γj(rj(µ

f ))∑
j∈f hj(rj(µ

f ))
ϑn
(∑

j∈f hj(rj(µ
f ))
)

,

Πf,mc is strictly increasing on [1, µf,mc], and strictly decreasing on [µf,mc, µ̄f ).

Next, we argue that mf (Q) > µ̄f,mc for every Q > 0. To see this, note that mf (Q) is the

unique solution of equation

µf − 1

µf

∑
j∈f hj(rj(µ

f ))∑
j∈f γj(rj(µ

f ))
= ϑn

(∑
j∈f

hj(rj(µ
f ))

)
+

(∑
j∈f

hj(rj(µ
f ))

)
Φn′

(∑
j∈f

hj(rj(µ
f ))

)
Q,

where we have combined equations (xxviii) and (xxix). Moreover, by Lemma XXIII, mf is

strictly increasing. Hence, mf (0) = limQ→0m
f (Q) exists, and limQ→0m

f (Q) < mf (Q) for

every Q. Moreover, mf (0) satisfies

µf − 1

µf

∑
j∈f hj(rj(µ

f ))∑
j∈f γj(rj(µ

f ))
= ϑn

(∑
j∈f

hj(rj(µ
f ))

)
.

Hence, mf (0) = µf,mc.

Let πf∗ and µf
∗

(resp. πf∗′ and µf
∗′) be firm f ’s equilibrium profit and ι-markup when

the value of the outside option is Φ0 (resp. Φ0′). Since Q(Φ∗) < Q(Φ∗′), we have that

µf∗′ > µf∗ > µf,mc. Therefore,

πf∗ = Πf,mc(µf∗)Ψ′(Φ∗),

> Πf,mc(µf∗)Ψ′(Φ∗′),

> Πf,mc(µf∗′)Ψ′(Φ∗′),

= πf∗′,

where the third line follows from the fact that Πf,mc is strictly decreasing on (µf,mc, µ̄f ).

IX Additive Aggregation and Demand Systems

IX.1 Characterization Result

We have shown in the paper that the demand system (i) gives rise to aggregative pricing

games with additive aggregation. A natural question is whether this property extends to a

wider class of demand systems.

For the purpose of this section, it is useful to provide a precise definition of aggregative
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games and demand systems. We say that the C2 mapping D : RN++ −→ RN is a quasi-linear

demand system if D satisfies Slutsky symmetry (∂Di/∂pj = ∂Dj/∂pi for every i, j) and

∂Di/∂pj 6= 0 for every i 6= j.14 Let G = (I, (Ai)i∈I , (πi)i∈I) be a normal-form game. Suppose

that each action space Ai is a cartesian product of intervals. We say that the game G is

aggregative with additive and smooth aggregation if there exist collections of C2 functions

(ψj)j∈I and (φj)j∈I such that for every a = (aj)j∈I ∈
∏

j∈I Aj and i ∈ I,

πi(a) = φi

(
ai,
∑
j∈I

ψj(aj)

)
.

The following proposition provides a complete characterization of the class of demand

systems that give rise to aggregative pricing games:

Proposition XII. Let D be a quasi-linear demand system. Suppose that the set of products

N contains at least three elements. The following assertions are equivalent:

(i) Any multiproduct-firm pricing game based on D is aggregative with smooth and additive

aggregation.

(ii) There exist C3 functions Ψ, (gi)i∈N , and (hi)i∈N such that

Di(p) = −g′i(pi)− h′i(pi)Ψ′
(∑
j∈N

hj(pj)

)
, ∀i ∈ N , ∀p >> 0. (xxxii)

Moreover, consumer surplus is given by:

V (p) =
∑
j∈N

gj(pj) + Ψ

(∑
j∈N

hj(pj)

)
.

Proof. It is obvious that (ii) implies (i). Assume that (i) holds, and consider the pricing game

with firm partition {{i}}i∈N and zero marginal cost. Since (i) holds, there exist C2 functions

φi(pi, H) and hi(pi) for every i such that, for every i ∈ N , the profit of firm {i} is given by:

Π{i}(p) = φi

(
pi,
∑
j∈N

hj(pj)

)
= piDi(p).

It follows that

Di(p) =
1

pi
φi

(
pi,
∑
j∈N

hj(pj)

)
≡ fi

(
pi,
∑
j∈N

hj(pj)

)
, ∀i.

14Recall that Slutsky symmetry is necessary for quasi-linear integrability.
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Since ∂Di/∂pj(p) 6= 0, it follows that h′i(pi) 6= 0 for every pi, and ∂fi(pi, H)/∂H 6= 0 for

every pi and H.

By Slutsky symmetry, for every i 6= j,

h′j
∂fi
∂H

(pi, H) =
∂Di

∂pj
=
∂Dj

∂pi
= h′i

∂fj
∂H

(pj, H). (xxxiii)

Next, we differentiate the Slutsky condition with respect to pk, k 6= i, j:

h′jh
′
k

∂2fi
∂H2

= h′ih
′
k

∂2fj
∂H2

.

Since h′k 6= 0, it follows that

h′j
∂2fi
∂H2

= h′i
∂2fj
∂H2

. (xxxiv)

Next, differentiate the Slutsky condition with respect to pi:

h′j
∂2fi
∂pi∂H

+ h′jh
′
i

∂2fi
∂H2

= h′′i
∂fj
∂H

+ h′2i
∂2fj
∂H2

.

Therefore, using equation (xxxiv),

h′j
∂2fi
∂pi∂H

= h′′i
∂fj
∂H

.

Next, we use equation (xxxiii) to eliminate ∂fj/∂H and h′j. This yields:

∂2fi
∂pi∂H

(pi, H)
∂fi
∂H

(pi, H)
=
h′′i
h′i
.

The above condition must hold for every (pi, H) in the domain of fi. Note that it depends

only on pi and H (and not on pj for j 6= i). Integrating this partial differential equation, we

obtain:
∂fi
∂H

(pi, H) = h′i(pi)λi(H),

where λi(H) is a constant of integration. Integrating once more, we obtain:

fi(pi, H) = h′i(pi)Λi(H) + g′i(pi),

where Λi is an anti-derivative of λi, and g′i is a constant of integration. Therefore,

Di(p) = h′i(pi)Λi

(∑
j∈N

hj(pj)

)
+ g′i(pi), ∀i.
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Next, we use Slutsky symmetry one more time:

h′ih
′
jΛ
′
i(H) = h′ih

′
jΛ
′
j(H).

Therefore, Λi and Λj differ by an additive constant, which we can safely ignore (or, rather,

incorporate in the g′i functions). It follows that (ii) holds.

Proposition XII generalizes Anderson, Erkal, and Piccinin (2013)’s Propositions 4 and

5. Note that the demand system (xxxii) can be viewed as the sum of a monopoly com-

ponent (−g′i(pi)) and an IIA component (−h′i(pi)Ψ′(
∑

j hj(pj))). If the monopoly compo-

nent is equal to zero for every product, then the demand system boils down to Di(p) =

−h′i(pi)Ψ′(
∑

j hj(pj)), which is a special case (without nests) of the class of demand systems

introduced in Section VII and analyzed in Section VIII.15 A special case where the monopoly

component is not equal to zero is linear demand (in that case, hj, g
′
j and Ψ′ are all affine

functions).

In the baseline model studied in the paper, the aggregator H(p) =
∑

j∈N hj(pj) is a

sufficient statistic for consumer surplus. This property also holds true for the more general

demand system (xxxii) if and only if g′i = 0 for every i, i.e., if and only if the demand system

has the IIA property. If the demand system does not have the IIA property, then consumer

surplus is given by V (p) = G(p)+Ψ(H(p)), where G(p) =
∑

j∈N gj(pj), i.e., consumer surplus

depends on the additively separable aggregators H(p) and G(p).

Whether or not the monopoly component is equal to zero, it is easy to show that any pri-

cing game based on the demand system (xxxii) satisfies a generalized version of the common-ι

markup property. We do so in the next subsection.

IX.2 The Generalized Common ι-Markup Property

Fix a pricing game based on the demand system (xxxii). Let f ∈ F and i ∈ f . Then,

∂Πf

∂pi
= −h′iΨ′ − g′i − (pi − ci)(h′′i Ψ′ + g′′i )−

∑
j∈f

(pj − cj)h′jh′iΨ′′.

Therefore, at any optimum,

pi − ci
pi

ιi(pi)−
g′i(pi) + (pi − ci)g′′i (pi)

h′i(pi)Ψ
′(H)

= 1 +
Ψ′′(H)

Ψ′(H)

∑
j∈f

(pj − cj)h′j(pi)︸ ︷︷ ︸
≡µf

.

Note that the left-hand side of the above condition only depends on pi and H, whereas the

right-hand side, which we call µf , is independent of the identity of product i. Therefore,

15Recall that nests are handled in Section VIII are handled by making use of sub-aggregators, i.e., by
giving up on fully additive aggregation.
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for a given aggregator level H, firm f ’s optimal strategy can still be summarized by the

uni-dimensional sufficient statistic µf . Note that the corresponding pricing function ri now

depends on H and µf , as in our analysis of quantity competition in Section XI.

Moreover, ri is independent of H for every product i if and only if g′i = 0. The following

assertions are therefore equivalent:

(i) For every firm partition F , the demand system D gives rise to an aggregative pricing

game with additive aggregation. Moreover, for any such pricing game, for every product

i, the pricing function ri depends only on µf .

(ii) D satisfies the IIA property.

(iii) D can be written as

Di(p) = −h′i(pi)Ψ′
(∑
j∈N

hj(pj)

)
.

As mentioned above, pricing games based on demand systems that have the IIA property

are studied in depth in Section VIII.

X General Equilibrium

In this section, we relax the assumption of quasi-linear preferences, and develop a general

equilibrium extension of our framework. As in Neary (2003, 2016)’s treatment of general

oligopolistic equilibrium, we study a model with a continuum of sectors and a finite number of

firms in each sector. The representative consumer’s preferences are represented by an indirect

utility function that is additively separable across sectors, as in Bertoletti and Etro (2017).

The assumption of indirect additive separability implies that demand in a sector depends on

prices in other sectors only through the marginal utility of income, which atomistic firms take

as given. This property allows us to use the results derived in Section VIII to characterize

the set of equilibria of our general oligopolistic equilibrium model.

X.1 The Demand System

There is a continuum of sectors, indexed by z ∈ I, where I =
⋃K
k=1 Ik is a finite and disjoint

union of compact intervals. For every k ∈ {1, . . . , K} and z ∈ Ik, the set of products in sector

z is a finite set N k containing at least two elements. For every 1 ≤ k ≤ K and z ∈ Ik, the

price of product j ∈ N k in sector z is denoted by pj(z) > 0. The representative consumer’s

indirect utility at price profile p and income level y > 0 is given by:

V (p, y) =
K∑
k=1

∫
Ik

Ψ

∑
j∈N k

hj

(
pj(z)

y
, z

)
, z

 dz,
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where:

(a) For every k ∈ {1, . . . , K} and j ∈ N k, hj is a C3 function from R++ × Ik to R++ such

that, for every z ∈ Ik, hj(·, z) is strictly decreasing and log-convex.

(b) Ψ is a C3 function from R++ × I to R such that, for every z ∈ I, H 7→ H∂1Ψ(H, z) is

strictly positive and non-decreasing.16

Assumptions (a) and (b) are the counterparts of conditions (a) and (c) in Proposition IX.

Moreover, we restrict attention to price vectors p such that, for every k ∈ {1, . . . , K} and

j ∈ N k, z ∈ Ik 7→ pj(z) is continuous.17 This restriction, together with the smoothness

assumptions imposed above, ensures that all the integrals in this section are well defined.

Properties of V . We now check that V has the properties of an indirect utility function.

V is clearly homogeneous of degree 0 in price and income, decreasing in prices and increasing

in income. We also need to check that V is quasi-convex in (p, y). We first argue that it is

enough to check that V (p, 1) is quasi-convex in p. To see this, suppose that V (p, 1) is indeed

quasi-convex, and let (p, y), (p′, y′), and λ ∈ (0, 1). Note that

V (λp+ (1− λ)p′, λy + (1− λ)y′) = V

(
λp+ (1− λ)p′

λy + (1− λ)y′
, 1

)
,

= V

(
λy

λy + (1− λ)y′
p

y
+

(1− λ)y′

λy + (1− λ)y′
p′

y′
, 1

)
,

≤ max

(
V

(
p

y
, 1

)
, V

(
p′

y′
, 1

))
,

= max (V (p, y) , V (p′, y′)) .

Hence, quasi-convexity of V (·, 1) implies quasi-convexity of V (·, ·).
By Proposition X, for every k ∈ {1, . . . , K} and z ∈ Ik, the function p ∈ RN k++ 7→

Ψ
(∑

j∈N k hj(pj, z), z
)

is convex. It follows that V (·, 1) is convex, hence, quasi-convex.

The demand system. Applying Roy’s identity, we find the demand for product i ∈ N k

in sector z ∈ Ik:

Di(p, y) =
−∂1hi

(
pi(z)
y
, z
)
∂1Ψ

(∑
j∈N k hj

(
pj(z)

y
, z
)
, z
)

∑K
k′=1

∫
z′∈Ik′

(∑
j∈N k′

pj(z′)
y

(
−∂1hj

(
pj(z′)
y
, z′
)))

∂1Ψ
(∑

j∈N k′ hj

(
pj(z′)
y
, z′
)
, z′
)
dz′

.

16In this section, we denote by ∂if the derivative of the function f with respect to the ith argument, and
by ∂2ijf the cross-partial derivative of the function f with respect to the ith and jth arguments.

17The equilibrium price profile characterized in Section X.3 satisfies this property.
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Thus, demand is equal to the reciprocal of an economy-wide aggregate

K∑
k′=1

∫
z′∈Ik′

∑
j∈N k′

pj(z
′)

y

(
−∂1hj

(
pj(z

′)

y
, z′
)) ∂1Ψ

∑
j∈N k′

hj

(
pj(z

′)

y
, z′
)
, z′

 dz′,

which atomistic firms cannot affect, times demand under quasi-linear preferences

−∂1hi

(
pi(z)

y
, z

)
∂1Ψ

∑
j∈N k

hj

(
pj(z)

y
, z

)
, z

 .

Special cases. Suppose that, for every H and z, Ψ(H, z) = α(z) logH, where α(·) is a

strictly positive and smooth function, and that, for every j and z, hj(pj, z) = aj(z)p1−σ
j ,

where σ > 1, and aj(·) is a strictly positive and smooth function. Then, the demand system

boils down to:

Di(p, y) =
α(z)∫

z′∈I α(z′)dz′
ai(z)pi(z)−σ∑

j∈N k aj(z)pj(z)1−σ y, (k ∈ {1, . . . , K}, z ∈ Ik, i ∈ N k).

This demand system, which can be derived from the maximization of a direct utility function

with a Cobb-Douglas upper tier and a CES lower tier, is used in Hottman, Redding, and

Weinstein (2016).

Another special case arises when, for every H and z, Ψ(H, z) = α(z)Hβ, where β ∈ (0, 1),

and α(·) is a strictly positive and smooth function, and, for every j and z, hj(pj, z) =

aj(z)p1−σ
j , where σ > 1, and aj(·) is a strictly positive and smooth function. In that case,

the demand system boils down to:

Di(p, y) =
α(z)ai(z)pi(z)−σ

(∑
j∈N k aj(z)pj(z)1−σ

)β−1

∑K
k′=1

∫
z′∈Ik′ α(z′)

(∑
j∈N k′ aj(z

′)pj(z′)1−σ
)β
dz′

y, (1 ≤ k ≤ K, z ∈ Ik, i ∈ N k).

This demand system, which can be derived from the maximization of a direct utility function

with CES upper and lower tiers, is used in Atkeson and Burstein (2008) and Edmond,

Midrigan, and Xu (2015).

X.2 Multiproduct-Firm Oligopoly Pricing in General Equilibrium

The demand side was already defined in Section X.1. We now describe the supply side, and

define the equilibrium concept. For every k ∈ {1, . . . , K}, the set N k is partitioned into a set

Fk containing at least two elements. For every z ∈ Ik, the set of firms present in sector z is

indexed by F(z) = Fk. We assume that each firm is present in only one sector. As in Neary

(2003, 2016), this ensures that a firm is big in its own sector (in the sense that it internalizes
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the impact of its prices on the sector’s aggregator), but small in the economy (in the sense

that it does not internalize the impact of its prices on the marginal utility of income).

There is a fixed labor supply, L > 0. The marginal cost of product j ∈ N k (k ∈
{1, . . . , K}) is wcj(z), where w is the economy-wide wage rate, and cj(z) is product j’s

labor requirement. The representative consumer owns all the firms in the economy. In the

following, we normalize total income y to 1.

The profit of firm f operating in sector z ∈ Ik is given by:

Πf =
1∑K

k′=1

∫
z′∈Ik′

(∑
j∈N k′ pj(z

′) (−∂1hj (pj(z′), z′))
)
∂1Ψ

(∑
j∈N k′ hj (pj(z′), z′) , z′

)
dz′

×
∑
i∈f

(pi − wci(z)) (−∂1hi (pi(z), z)) ∂1Ψ

∑
j∈N k

hj (pj(z), z) , z

 .

Thus, firm f ’s profit is equal to the reciprocal of the marginal utility of income, which firm

f cannot affect, times firm f ’s profit in the pricing game with nested demand

Υ(z, w) =
(
Ψ(·, z),Φm, (hj(·, z))j∈N k , 0,Fk, (wcj(z))j∈N k

)
,

where the nest partition is M = {N k}, and Φm is the identity function. (The notation for

pricing games with nested demand was introduced in Section VIII.1.)

An equilibrium is a profile of prices p∗ and a wage rate w∗ such that: Given the wage rate

w∗, for every k ∈ {1, . . . , K} and z ∈ Ik, (p∗j(z))j∈N k is an equilibrium of the pricing game

Υ(z, w); The labor market clears.

We make the following assumptions:

Assumption iv. (a) For every k ∈ {1, . . . , K} and j ∈ N k, hj is a C3 function from

R++ × Ik to R++ such that, for every z ∈ Ik, hj(·, z) is strictly decreasing and log-

convex.

(b) Ψ is a C3 function from R++ × I to R such that, for every z ∈ I, H 7→ H∂1Ψ(H, z) is

strictly positive and non-decreasing.

(c) For every k ∈ {1, . . . , K} and j ∈ N k, cj(·) is continuous.

(d) For every k ∈ {1, . . . , K}, z ∈ Ik, j ∈ N k, and pj > 0, ∂1ιj(pj, z) ≥ 0 whenever

ιj(pj, z) > 1, where ιj(·, z) is the absolute value of the elasticity of −∂1hj(·, z).

(e) For every k ∈ {1, . . . , K}, z ∈ Ik, f ∈ Fk, and i, j ∈ f , µ̄i(z) = µ̄j(z) ≡ µ̄f (z), where

µ̄l(z) ≡ limpl→∞ ιl(pl, z).

(f) For every k ∈ {1, . . . , K}, z ∈ Ik, and f ∈ Fk, at least one of the following conditions

holds:
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– maxj∈f suppj>pj(z)
θj(pj, z) ≥ minj∈f infpj>pj(z) ρj(pj, z),

– µ̄f (z) ≤ µ∗. Moreover, for every j ∈ f , ρj(·, z) is non-decreasing on (p
j
(z),∞),

and limpj→∞ hj(pj, z) = 0,

– There exists a function hf ∈ Hι, a labor requirement level cf , and a profile of

quality shifters (aj)j∈f ∈ Rf
++, such that hj(·, z) = ajh

f and cj(z) = cf for every

j ∈ f . Moreover, ρf is non-decreasing on (pf ,∞),

where, for every j ∈ f , p
j
(z) = inf{pj > 0 : ιj(pj, z) > 1}, γj(·, z) = (∂1hj(·, z))2/∂2

11hj(·, z),

ρj(·, z) = hj(·, z)/γj(·, z), θj(·, z) = ∂1hj(·, z)/∂1γj(·, z), and the threshold µ∗ was defi-

ned in Section V.2.3.

(g) For every z ∈ I, ∂2
11Ψ(·, z) < 0.

(h) For every z ∈ I, H 7→ H(−∂2
11Ψ(H, z))/∂1Ψ(H, z) is non-decreasing.

As shown in the previous section, Assumptions iv–(a) and (b) guarantee that V has the

properties of an indirect utility function. Assumptions iv–(d) and (f) are the counterparts of

Assumptions iii–(f) and (g). Assumptions iv–(g) and (h) are the counterparts of Assumpti-

ons iii–(e) and (i). Assumptions iv–(c) and (e) will allow us to establish the joint continuity

of equilibrium prices in the sector index z and the wage rate w.

X.3 Equilibrium analysis

Behavior of equilibrium prices as a function of (z, w). We start by studying equi-

librium prices as a function of the sector index z ∈ Ik and the wage rate w. Note that,

given the wage rate w, the pricing game in sector z satisfies Assumption iii. (The nest

partition is simply Mk = {N k}. The nest function Φm is the identity function.) Hence,

by Theorem III, there exists a unique equilibrium price vector (p̂j(z, w))j∈N k and a unique

equilibrium aggregator level Ĥ(z, w) in sector z.

We now argue that (p̂j(·, ·))j∈N k and Ĥ(·, ·) are both continuous. Let f ∈ Fk, j ∈ f , and

µf ∈ (1, µ̄f (z)). Applying the implicit function theorem to the equation

pj − wcj(z)

pj
ιj(pj, z) = µf ,

we obtain that the pricing function rj(µ
f , z, w) is C1. Moreover, ∂1rj > 0.

The same theorem applied to the equation

µf − 1

µf
1∑

j∈f γj(rj(µ
f , z, w), z)

= Q

implies that the fitting-in function mf (Q, z, w) is C1 as well. (See equation (xxx) in Section

VIII.2.) Moreover, ∂1m
f > 0.
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Recall that the equilibrium aggregator level Ĥ(z, w) is pinned down by

Ω(H, z, w) ≡ 1

H

∑
f∈Fk

∑
j∈f

hj
(
rj(m

f (Q(H, z), z, w), z, w), z
)

= 1, (xxxv)

where Q(H, z) = −∂2
11Ψ(H, z)/∂1Ψ(H, z). In order to apply the implicit function theorem to

that equation, we argue that ∂1Ω < 0. We distinguish two cases. Suppose first that ∂1Q ≥ 0.

Then, the derivative of the sum in equation (xxxv) is∑
f∈Fk

∑
j∈f

∂1Q× ∂1m
f × ∂1rj × ∂1hj ≤ 0.

Hence, ∂1Ω < 0. Suppose instead that ∂1Q < 0. Note that Ω can be rewritten as

Ω(H, z, w) =
1

HQ(H, z)

∑
f∈Fk

Q(H, z)
∑
j∈f

hj
(
rj(m

f (Q(H, z), z, w), z, w), z
)
,

=
1

η(H, z)

∑
f∈Fk

mf (Q(H, z), z, w)− 1

mf (Q(H, z), z, w)

∑
j∈f hj

(
rj(m

f (Q(H, z), z, w), z, w), z
)∑

j∈f γj (rj(mf (Q(H, z), z, w), z, w), z)
,

=
1

η(H, z)

∑
f∈Fk

sf
(
mf (Q(H, z), z, w), z, w

)
,

where η(H, z) is the absolute value of the elasticity of ∂1Ψ with respect to H, and

sf (µf , z, w) =
µf − 1

µf

∑
j∈f hj

(
rj(µ

f , z, w), z
)∑

j∈f γj (rj(µf , z, w), z)
.

By Lemmas VII–IX and Assumption iv–(f), ∂1s
f > 0. By Assumption iv–(h), ∂1η(H, z) ≥ 0.

It follows that ∂1Ω < 0.

We can therefore apply the implicit function theorem to equation (xxxv) to conclude that

Ĥ(z, w) is C1. It follows that equilibrium prices

p̂j(z, w) = rj

(
mf
(
Q
(
Ĥ(z, w), z

)
, z, w

)
, z, w

)
are C1 as well.

Labor demand. The function p̂j(·, ·) and Ĥ(·, ·) allow us to write overall labor demand as

as function of the wage rate w:

Ld(w) =

∑K
k=1

∫
Ik
∑

j∈N k cj(z) (−∂1hj(p̂j(z, w), z)) ∂1Ψ(Ĥ(z, w), z)dz∑K
k=1

∫
Ik
∑

j∈N k p̂j(z, w) (−∂1hj(p̂j(z, w), z)) ∂1Ψ(Ĥ(z, w), z)dz
.
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Since the integrands are jointly continuous in (z, w) and the domains of integration are

compact intervals, Ld(·) is continuous. Moreover, since firms never price below cost, we have

that p̂j(z, w) ≥ wcj(z) for every (z, w). It follows that

Ld(w) ≤
∑K

k=1

∫
Ik
∑

j∈N k
1
w
p̂j(z, w) (−∂1hj(p̂j(z, w), z)) ∂1Ψ(Ĥ(z, w), z)dz∑K

k=1

∫
Ik
∑

j∈N k p̂j(z, w) (−∂1hj(p̂j(z, w), z)) ∂1Ψ(Ĥ(z, w), z)dz
,

=
1

w
−→
w→∞

0.

As a next step, we would like to show that labor demand tends to infinity as the wage

rate goes to zero. However, it is easy to show that this is not necessarily the case.18 To

see this, consider the case in which all the sectors are identical, demand is of the MNL type

(hj(pj, z) = e
aj(z)−pj
λj(z) ), and there are only two symmetric products with identical marginal

costs c in each sector. As w tends to 0, it is easy to show that equilibrium prices converge to

those that prevail in a pricing game with MNL demand and 0 marginal cost. Let p̂ > 0 be

that symmetric MNL equilibrium price. Then, as w tends to 0, Ld converges to c/p̂, which

is finite.

Since Ld does not necessarily tend to infinity as w goes to zero, an equilibrium may fail to

exist if L is too high. We now make this statement more precise. Let L = supw>0 L
d(w)(> 0),

where L may or may not be infinite. The continuity of Ld implies that the range of that

function is either (0, L) or (0, L]. Hence, an equilibrium exists if L < L, and does not exist

if L > L.

Equilibrium uniqueness is hard to establish in general, because Ld is not necessarily

monotone in w. To see this non-monotonicity, note that the integrand in the denominator

in the definition of Ld is equal to industry revenue in a pricing game under quasi-linear

preferences. An increase in production costs may or not push the industry closer to industry

revenue maximization. Another source of non-monotonicity is that, as we show in Section 3.3

of the paper, Ĥ does not necessarily decrease when costs increase.

Before turning our attention to special cases, we summarize our results on equilibrium

existence in the following proposition:

Proposition XIII. Fix a model of multiproduct-firm oligopoly pricing in general equilibrium

with exogenous labor supply L > 0, as defined in Section X.2. Suppose that Assumption iv

holds. Then, there exists L ∈ (0,∞] such that an equilibrium exists if L < L, and does not

exist if L > L.

18A similar issue arises in Neary (2016)’s treatment of Cournot oligopoly with a continuum of sectors and
linear demand. In his framework, if labor supply is too high, then the market-clearing wage ends up being
negative.
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X.4 Special Cases

We now focus on the special case in which ∂1Ψ(H, z) = α(z)/Hβ(z), where α(·) and β(·)
are smooth functions such that α(z) > 0 and 0 < β(z) ≤ 1 for every z, and hj(pj, z) =

aj(z)p
1−σ(z)
j , where aj(·) and σ(·) are smooth functions such that aj(z) > 0 and σ(z) > 1 for

every z. Note that, in the case where β and σ do not vary across sector, the demand system

reduces to the one in Hottman, Redding, and Weinstein (2016) (if β = 1), or in Atkeson and

Burstein (2008) and Edmond, Midrigan, and Xu (2015) (if β < 1). (See the discussion at

the end of Section X.1.)

The labor demand function Ld can then be simplified as follows:

Ld(w) =

∑K
k=1

∫
Ik α(z)(σ(z)− 1)

∑
j∈N k

cj(z)

p̂j(z,w)

hj(p̂j(z,w),z)

Ĥ(z,w)β(z) dz∑K
k=1

∫
Ik α(z)(σ(z)− 1)Ĥ(z, w)1−β(z)dz

.

We now argue that, for every w, z, and j, p̂j(z, w) = wp̂j(z, 1). Since rj(µ
f , z, w) =

σ(z)
σ(z)−µfwcj(z) for every j, all we need to do is show that the equilibrium profile of ι-markups

in sector z is independent of w. Recall that (µf )f∈Fk is an equilibrium profile of ι-markups

in sector z if and only if, for every firm f ,

µf − 1

µf
=
∑
j∈f

γj(rj(µ
f , z, w), z)

−∂2
11Ψ

(∑
g∈Fk

∑
i∈g hi(ri(µ

g, z, w), z)
)

∂1Ψ
(∑

g∈Fk
∑

i∈g hi(ri(µ
g, z, w), z)

) .

Given the functional form assumptions made above, this is equivalent to

µf − 1

µf
= β(z)

σ(z)− 1

σ(z)

∑
j∈f hj(rj(µ

f , z, w), z)∑
g∈Fk

∑
i∈g hi(ri(µ

g, z, w), z)
,

= β(z)
σ(z)− 1

σ(z)

∑
j∈f

(
σ(z)

σ(z)−µfwcj(z)
)1−σ(z)

∑
g∈Fk

∑
i∈g

(
σ(z)

σ(z)−µgwci(z)
)1−σ(z)

,

= β(z)
σ(z)− 1

σ(z)

∑
j∈f

(
σ(z)

σ(z)−µf cj(z)
)1−σ(z)

∑
g∈Fk

∑
i∈g

(
σ(z)

σ(z)−µg ci(z)
)1−σ(z)

.

Hence, (µf )f∈Fk is an equilibrium profile of ι-markups in sector z when the wage rate is w if

and only if it is an an equilibrium profile of ι-markups in sector z when the wage rate is 1.

This proves our claim that p̂j(z, w) = wp̂j(z, 1) for every j and z.

Ld therefore simplifies to:

Ld(w) =
1

w

∑K
k=1

∫
Ik α(z)(σ(z)− 1)

∑
j∈N k

cj(z)

p̂j(z,1)

hj(p̂j(z,1),z)

Ĥ(z,1)β(z) w
(1−σ(z))(1−β(z))dz∑K

k=1

∫
Ik α(z)(σ(z)− 1)Ĥ(z, 1)1−β(z)w(1−σ(z))(1−β(z))dz

.
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Define

m ≡ min
1≤k≤K

min
j∈N k

min
z∈Ik

cj(z)

p̂j(z, 1)
.

By continuity and compactness, the minimum exists, and is strictly positive. Hence,

Ld(w) ≥ 1

w

∑K
k=1

∫
Ik α(z)(σ(z)− 1)

∑
j∈N k m

hj(p̂j(z,1),z)

Ĥ(z,1)β(z) w
(1−σ(z))(1−β(z))dz∑K

k=1

∫
Ik α(z)(σ(z)− 1)Ĥ(z, 1)1−β(z)w(1−σ(z))(1−β(z))dz

,

=
m

w
−→
w→0+

∞.

Hence, using the notation introduced in the statement of Proposition XIII, L = ∞, and an

equilibrium always exists.

Equilibrium uniqueness seems harder to establish in general. An immediate observation

is that, if (1−σ(z))(1−β(z)) does not vary across sector, as in the demand systems used by

Atkeson and Burstein (2008), Edmond, Midrigan, and Xu (2015), and Hottman, Redding,

and Weinstein (2016), then, Ld is proportional to 1/w, and therefore strictly decreasing, and

uniqueness follows. More generally, it is easy to show that, if

max
z∈I

(1− σ(z))(1− β(z)) ≤ 1 + min
z∈I

(1− σ(z))(1− β(z)),

i.e., if the preference parameters σ and β do not vary too much across sector, then Ld is

strictly decreasing, and uniqueness follows.

XI Quantity Competition

XI.1 The Demand System

We work with the following family of (quasi-linear) inverse demand systems:

Pi(x) =
h′i(xi)∑
j∈N hj(xj)

,

where xj is the output of good j. We assume that hi > 0 and h′i > 0, i.e., products are

substitutes. We also assume that h′′i < 0, which ensures that, under monopolistic competi-

tion, the inverse demand for product i is strictly decreasing everywhere. This also implies

∂Pi/∂xi < 0.

The direct subutility function associated with this demand system is U(x) = log
∑

j∈N hj(xj).

Since x 7→
∑

j∈N hj(xj) is strictly concave, and the logarithm is strictly increasing and strictly

concave, it follows that U is strictly concave.
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XI.2 Assumptions and Technical Preliminaries

We make two assumptions on the limits of h′i. First, we assume that lim0 h
′
i = ∞. This

means that, under monopolistic competition, a firm can always make strictly positive profits

by supplying a strictly positive quantity. Second, we assume that lim∞ h
′
i = 0. In other

words, the monopolistic competition price of good i goes to 0 as xi tends to infinity.

Moreover, we assume that monopolistic competition inverse demand functions satisfy

Marshall’s second law of demand: |ιi| is non-decreasing for every i, where ιi(xi) = xi
h′′i (xi)

h′i(xi)
.

Since h′i > 0 and h′′i < 0, this means that ι′i ≤ 0.

Next, we use these assumptions to establish a few basic facts about the functions hi and

ιi. Note first that limxi→0 xih
′
i(xi) = 0. To see this, note that, by the fundamental theorem

of calculus,

hi(xi)− hi(0) =

∫ xi

0

h′i(t)dt ≥ xih
′
i(xi) ≥ 0,

where the first inequality follows from the fact that h′′i < 0. By the sandwich theorem, it

follows that limxi→0 xih
′
i(xi) = 0.

Next, let µ̄i = 1 + limxi→0 ιi(xi). Since ιi ≤ 0 and ιi is monotone, µ̄i exists, and µ̄i ≤ 1.

Assume for a contradiction that µ̄i ≤ 0. Then, since ιi is non-increasing, it follows that

ιi(xi) ≤ −1 for every xi. Therefore,

d

dxi
(xih

′
i(xi)) = xih

′′
i (xi) + h′i(xi) ≤ 0.

Since limxi→0 xih
′
i(xi) = 0, it follows that xih

′
i(xi) ≤ 0 for every xi. Therefore, h′i ≤ 0, a

contradiction. We conclude that µ̄i ∈ (0, 1] for every i.

XI.3 The Quantity-Setting Game and the Firm’s Profit-Maximization

Problem

A quantity-setting game is a triple ((hj)j∈N ,F , (cj)j∈N ), where (hj)j∈N is an inverse demand

system, F is a partition of the set of products, and (cj)j∈N is a vector of marginal costs. The

profit of firm f ∈ F can be written as follows:

Πf (x) =
∑
j∈f
xj>0

(
h′j(xj)∑
i∈N hi(xi)

− cj
)
xj.

Fix a firm f ∈ F , and let (xj)j∈N\f such that
∑

j∈N\f hj(xj) > 0. Then, we claim that

the maximization problem

max
(xj)j∈f∈[0,∞)f

Πf
(
(xj)j∈f , (xj)j∈N\f

)
(xxxvi)

has a solution. To see this, note that the assumptions made and the preliminary results

92



derived in Section XI.2 imply that Πf (·, (xj)j∈N\f ) is continuous on [0,∞)f . Moreover, since

products are substitutes and limxi→∞ h
′
i(xi) = 0 for every i, there exists M > 0 such that for

every (xj)j∈f ∈ [0,∞)f , there exists (x′j)j∈f ∈ [0,M ]f such that

Πf
(
(xj)j∈f , (xj)j∈N\f

)
< Πf

(
(x′j)j∈f , (xj)j∈N\f

)
.

Therefore, the sets of solutions of maximization problems (xxxvi) and

max
(xj)j∈f∈[0,M ]f

Πf
(
(xj)j∈f , (xj)j∈N\f

)
(xxxvii)

coincide. Since Πf (·, (xj)j∈N\f ) is continuous and [0,M ]f is compact, maximization pro-

blem (xxxvii) has a solution.

XI.4 The Additive Constant ι-Markup Property

We start by deriving first-order conditions under the assumption that all products are active.

The derivative of firm f ’s profit with respect to xk (k ∈ f) is given by:

∂πf

∂xk
=
h′k
H

(
−
∑

j∈f xjh
′
j

H
+ xk

h′′k
h′k

+

h′k
H
− ck
h′k
H

)
,

=
h′k
H

(
−
∑

j∈f xjh
′
j

H
+ ιk +

Pk − ck
Pk

)
,

Therefore, if the first-order conditions hold at output vector (xk)k∈f , then, for every k ∈ f ,

Pk − ck
Pk

+ ιk =

∑
j∈f xjh

′
j

H
.

Since the right-hand side of the above condition does not depend on k, it follows that an

additive form of the constant ι-markup property holds:

Pk − ck
Pk

+ ιk =
Pl − cl
Pl

+ ιl ≡ µf , ∀k, l ∈ f.

Under monopolistic competition, we would have µf = Pk−ck
Pk

+ ιk = 0. Under oligopoly, the

firm internalizes its impact on the aggregator, and sets µf > 0.

XI.5 Definition and Properties of Output Functions

Fix H > 0, and consider the following function:

νk(xk, H) = 1− ck
H

h′k(xk)
+ ιk(xk)

(
=
Pk − ck
Pk

+ ιk(xk)

)
.
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νk maps an output level and an aggregator level into a ι-markup. Note that, contrary to the

price-competition case, νk depends on H.

νk is differentiable, ∂νk/∂xk < 0 (due to h′′k < 0 and to Marshall’s second law of demand),

and ∂νk/∂H < 0. By the inverse function theorem, the inverse function χk(µ
f , H) is well-

defined and differentiable, and satisfies ∂χk/∂µ
f < 0 and ∂χk/∂H < 0. The output function

χk maps a ι-markup and an aggregator level into an output level. It plays the same role as

the pricing function rk in the paper.

For every xk > 0,

νk(xk, H) < sup
x̃k>0

νk(x̃k, H) = µ̄k.

Therefore, if µf ≥ µ̄k, then the ι-markup µf is not consistent with product k being sold. We

therefore extend χk by continuity: χk(µ
f , H) = 0 whenever µf ≥ µ̄k. Denote µ̄f = maxj∈f µ̄j.

XI.6 Definition and Properties of Markup Fitting-In Functions

Next, we use the output functions defined in the previous subsection to reduce firm f ’s

first-order conditions to a uni-dimensional equation:19

µf =
1

H

∑
j∈f

χj(µ
f , H)h′j

(
χj(µ

f , H)
)
. (xxxviii)

Since the right-hand side of condition (xxxviii) is strictly positive, we can safely restrict

attention to strictly positive µf ’s. Note that, for every k ∈ f and µf ∈ [0, µ̄k),

ιk
(
χk(µ

f , H)
)

= µf + ck
H

h′k (χk(µf , H))
− 1 > −1.

Therefore, by definition of ιk,

χk(µ
f , H)h′′k

(
χk(µ

f , H)
)

+ h′k
(
χk(µ

f , H)
)
> 0.

Combining the above inequality with the fact that ∂χk/∂µ
f < 0 for every k such that

µ̄k > µf , it follows that the right-hand side of condition (xxxviii) is strictly decreasing in µf

on interval (0, µ̄f ), and identically equal to zero on interval [µ̄f ,∞). Since the left-hand side

is strictly increasing in µf , there exists at most one µf such that firm f ’s simplified optimality

condition holds.

If µf ≥ µ̄f ≡ maxk∈f µ̄k, then the right-hand side of equation (xxxviii) is equal to zero

while the left-hand side is strictly positive. If µf is equal to zero, then the right-hand side

of equation (xxxviii) is strictly positive, and the left-hand side is equal to zero. Therefore,

equation (xxxviii) has a unique solution, which we denote by mf (H). mf is firm f ’s markup

fitting-in function.

19If the j-th term of the sum is such that µ̄j ≤ µf , then χj(µ
f , H)h′j(χj(µ

f , H)) = limxj→0 xjh
′
j(xj) = 0.
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Totally differentiating equation (xxxviii) yields:20

dµf = −dH
H
µf +

1

H

∑
j∈f

(
d(xjh

′
j(xj))

dxj

∣∣∣∣
xj=χj

(
∂χj
∂µf

dµf +
∂χj
∂H

dH

))
.

Therefore,

mf ′(H) =

−mf
H

+ 1
H

∑
j∈f

(
d(xjh

′
j(xj))

dxj

∣∣∣
xj=χj

∂χj
∂H

)
1− 1

H

∑
j∈f

(
d(xjh′j(xj))

dxj

∣∣∣
xj=χj

∂χj
∂µf

) ,

which is strictly negative, since ∂χj/∂µ
f < 0 and ∂χj/∂H < 0 for every j.

By monotonicity, limH→0m
f (H) and limH→∞m

f (H) exist. We will compute these limits

in the next subsection.

XI.7 Definition and Properties of Output Fitting-In Functions

For every k ∈ f , let Xk(H) = χk
(
mf (H), H

)
. The function H 7→ (Xk(H))k∈f is firm f ’s

output fitting-in function.

We first argue that limH→∞Xk(H) exists and is equal to zero for every k. Assume for

a contradiction that this is not the case. There exist k ∈ f , (Hn)n≥0, and ε > 0 such that

Hn −→
n→∞

∞ and Xk(H
n) > ε for every n. By definition of mf , we also have that

mf (Hn) = 1− ck
Hn

h′k(Xk(Hn))
+ ιk(Xk(H

n)),

< 1− ck
Hn

h′k(ε)
, since Xk(H

n) > ε, h′′k < 0, and ιk ≤ 0,

−→
n→∞

−∞.

Therefore, mf (Hn) is strictly negative for n high enough, a contradiction. Therefore, limH→∞Xk(H) =

0.

Next, we argue that limH→∞m
f (H) = 0. Condition (xxxviii) can be rewritten as follows:

mf (H) =
1

H

∑
j∈f

Xj(H)h′j (Xj(H)) .

Since, for every f , limH→∞Xj(H) = 0 and limxj→0 xjh
′
j(xj) = 0, it follows that limH→∞m

f (H) =

0.

Next, assume for a contradiction that Xk does not go to zero as H goes to 0 for some

k in f . There exist ε > 0 and (Hn)n≥0 such that Hn −→
n→∞

0 and Xk(H
n) > ε for every n.

Recall that the function xk 7→ xkh
′
k(xk) is strictly increasing on the relevant domain (see

20To ease notation, we ignore the fact that the sum should only span those j’s that satisfy χj > 0.
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Section XI.6). It follows that, for every n,

mf (Hn) =
1

Hn

∑
j∈f

Xj(H
n)h′j (Xj(H

n)) ,

≥ 1

Hn
Xk(H

n)h′k (Xk(H
n)) ,

≥ 1

Hn
εh′k(ε),

−→
n→∞

∞.

Since mf is always below unity, this is a contradiction. Therefore, limH→0Xk(H) = 0.

It follows immediately that limH→0m
f (H) = µ̄f . As competition intensifies (H goes up),

firm f decreases its ι-markup from µ̄f (the monopoly case) to 0 (the monopolistic competition

limit), and the set of products offered by firm f expands.

By contrast, the output fitting-in function Xk is non-monotonic in H: Xk(0) = Xk(∞) =

0, and Xk(H) > 0 for H high enough (if µ̄k < µ̄f , then Xk = 0 for H sufficiently low).

XI.8 Definition and Properties of the Aggregate Fitting-In Function

The aggregate fitting-in function is defined as follows:

Γ(H) =
∑
f∈F

∑
j∈f

hj (Xj(H)) .

Since Γ(0) = Γ(∞) =
∑

j∈N hj(0) and Γ(H) >
∑

j∈N hj(0) for every H > 0, Γ is non-

monotonic.

In the following, we first establish the existence of an H∗ > 0 such that Γ(H∗) = H∗. If

limxk→0 hk(xk) > 0 for some k ∈ N , then this is trivial: Since Γ is continuous, Γ(0) > 0, and

Γ(∞) <∞, existence of a fixed point follows from the intermediate value theorem.

Next, assume that hj(0) = 0 for every j. Note first that, by L’Hospital’s rule, for every j,

lim
x→0

hj(x)

xh′j(x)
= lim

x→0

h′j(x)

h′j(x) + xh′′j (x)
= lim

x→0

1

1 + ιj(x)
=

1

µ̄k
.

To simplify the exposition, assume that µ̄f = µ̄k for every f and k ∈ f . The case where

this assumption is violated can be dealt with as we do in the proof of Lemma J (by taking

an H small enough such that all the firms are only supplying their high µ̄k products). Take

some ε > 0 such that |F|(1− ε) > 1. There exists Ĥ > 0 such that
hj(Xj(H))

Xj(H)h′j(Xj(H))
≥ (1− ε) 1

µ̄f

for every H < Ĥ, f ∈ F and j ∈ f . Moreover, for every H < Ĥ,

Γ(H)

H
=
∑
f∈F

∑
j∈f

hj(Xj(H))

H
,
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=
∑
f∈F

∑
j∈f

Xj(H)h′j(Xj(H))

H

hj(Xj(H))

Xj(H)h′j(Xj(H))
,

≥ (1− ε)
∑
f∈F

1

µ̄f
1

H

∑
j∈f

Xj(H)h′j(Xj(H))

= (1− ε)
∑
f∈F

1

µ̄f
mf (H), by condition (xxxviii),

−→
H→0

(1− ε)
∑
f∈F

1, since lim
H→0

mf (H) = µ̄f ,

= |F|(1− ε),
> 1.

It follows that Γ(H) > H in the neighborhood of zero. The fact that limH→∞ Γ(H) = 0 and

the continuity of Γ give us the existence of a fixed point.

XI.9 Equilibrium Uniqueness and Sufficiency of First-Order Con-

ditions

In the previous subsection, we established the existence of an aggregator level H∗ such that

Γ(H∗) = H∗. Since we have not shown that first-order conditions are sufficient for global

optimality, we cannot conclude that H∗ is an equilibrium aggregator level.

Suppose that the following condition holds:∑
j∈f

(
HX ′j(H)h′j (Xj(H))− hj (Xj(H))

)
< 0, ∀f ∈ F , ∀H > 0. (xxxix)

Fix a firm f ∈ F and a profile of outputs for firm f ’s rivals (xj)j∈N\f such that H0 =∑
j∈N\f hj(xj) > 0. Define

Ωf (H,H0) =
1

H

(
H0 +

∑
j∈f

hj(Xj(H))

)
.

The first-order conditions associated with firm f ’s profit-maximization problem hold at out-

put vector (xj)j∈f if and only if there exists H > 0 such that xj = Xj(H) for every j ∈ f ,

and Ωf (H,H0) = 1. Since Ωf (0, H0) = ∞, Ωf (∞, H0) = 0, and Ωf (·, H0) is continuous,

there exists H > 0 such that Ωf (H,H0) = 1. Moreover, for every H > 0,

∂Ωf

∂H
=

1

H2

(∑
j∈f

X ′j(H)h′j(Xj(H))H − (H0 +
∑
j∈f

hj(Xj(H)))

)
,

<
1

H2

∑
j∈f

(
HX ′j(H)h′j(Xj(H))− hj(Xj(H))

)
,
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< 0, by condition (xxxix).

Therefore, Ωf (·, H0) is strictly decreasing, and there exists a unique H > 0 such that

Ωf (H,H0) = 1. This means that there exists a unique output profile (x̃j)j∈f for firm f

such that firm f ’s first-order conditions hold. In Section XI.3, we have shown that firm

f ’s profit maximization problem has a solution (x̂j)j∈f . By necessity, first-order conditions

must hold at output profile (x̂j)j∈f . By uniqueness, (x̃j)j∈f = (x̂j)j∈f . Therefore, first-order

conditions are necessary and sufficient for optimality.

This implies that H is an equilibrium aggregator level if and only if H is a fixed point of

the aggregate fitting-in function. Since we have established existence of such a fixed point,

it follows that the quantity-setting game has a Nash equilibrium.

In fact, under condition (xxxix), we can even prove that the quantity-setting game has a

unique equilibrium. To see this, define Ω(H) = Γ(H)/H. Then,

Ω′(H) =
1

H2

(∑
f∈F

∑
j∈f

HX ′j(H)h′j(Xj(H))−
∑
f∈F

∑
j∈f

hj(Xj(H))

)
,

which is strictly negative by condition (xxxix). Therefore, the aggregate fitting-in function

has a unique fixed point, and the quantity-setting game has a unique equilibrium.

XI.10 The CES Case

In the following, we show that condition (xxxix) holds in the CES case. For every j ∈ N ,

let hj(xj) = ajx
α
j , where aj > 0 is a quality parameter, and α ∈ (0, 1). Clearly, hj is strictly

increasing and strictly concave, limxj→0 h
′
j(xj) = ∞, and limxj→∞ h

′
j(xj) = 0. Moreover,

ιj = α− 1.

Note that, for every firm f ,

mf (H) =
1

H

∑
j∈f

Xj(H)h′j(Xj(H)) =
α

H

∑
j∈f

hj(Xj(H)).

Therefore,

mf ′(H) =
α

H2

∑
j∈f

(
HX ′j(H)h′j(Xj(H))− hj(Xj(H))

)
.

Since mf ′ < 0, it follows that
∑

j∈f
(
HX ′j(H)h′j(Xj(H))− hj(Xj(H))

)
< 0, i.e., condi-

tion (xxxix) holds. Therefore, multiproduct-firm quantity-setting games with CES demands

have a unique equilibrium.
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XI.11 Firm Scope and Industry Competitiveness under Quantity

Competition

As already mentioned in Section XI.7, as competition intensifies (H increases), firm f reacts

by lowering its ι-markup, and the set of products offered by firm f expands. Hence, under

quantity competition, it is still the case that firms respond to an increase in the intensity of

competition by adding products.

1 2 3 4 5
H0

0.02

0.04

0.06

0.08

0.10

0.12

X

X1(H0)

X2(H0)

Figure 1: Monopolist’s optimal output for products 1 and 2 as a function of H0

To illustrate this phenomenon, we consider a simple numerical example, in which a mo-

nopolist owning two products, 1 and 2, competes against an outside option H0 > 0. The

inverse demand function for product i is given by

Pi =
h′i(xi)

h1(x1) + h2(x2) +H0
,

where hj(xj) = x
αj
j (j ∈ {1, 2}), α1 = 0.5, and α2 = 0.8. We set both products’ marginal

costs equal to 1. We check numerically that the profit maximization problem has a unique

solution, and first-order conditions are sufficient for optimality for every H0 > 0. Figure 1

plots the monopolist’s optimal output for products 1 and 2 as a function of H0. Since µ̄2 > µ̄1,

product 2 is always active, whereas product 1 is inactive when H0 is sufficiently small.

XII Firm Scope and the Intensity of Competition

Our model predicts that multiproduct firms respond to an increase in the intensity of com-

petition by broadening their scope. As shown in Section 3.2, the fitting-in function mf (H)
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is strictly decreasing in H, implying that the set of products j in f such that µ̄j > mf (H)

expands as H increases. This implies that a shock that shifts the aggregate fitting-in function

upward, such as a unilateral trade liberalization or the entry of a new competitor, induces

firms to supply more products (Proposition 4).

The intuition is rooted in the IIA property, which implies that, when a firm that has a

low market share introduces a new product, that new product mostly cannibalizes sales from

the firm’s rivals rather than from the firm’s other products. Hence, a firm that operates in a

highly competitive environment worries little about self-cannibalization effects, and instead

has an incentive to flood the market with its products, in order to increase the probability

that one of its products is chosen by any given consumer. By contrast, a firm that operates

in an environment with little competition has an incentive to withdraw its weaker products

(i.e., those products on which the firm earns a low profit conditional on the product being

chosen) in order to channel consumers towards its stronger products.

As shown in Section XI, these results extend readily to the case of quantity competition, at

least within the class of demand systems we consider. Since the fitting-in function mf conti-

nues to be decreasing in the aggregator level H, the set of active products continues to expand

as competition intensifies. Section XI.11 provides a numerical example. The prediction is

more nuanced in Section VIII, where we consider richer substitution patterns between the

firms’ products and the outside option, as captured by the function Ψ(·). As discussed in

Section VIII.3, the local monotonicity properties of the fitting-in function m̃f (·) ≡ mf (Q(·))
depend on the local behavior of the curvature of Ψ(·), as measured by Q(·) = −Ψ′′(·)/Ψ′(·).
However, it is easy to show that, since the curvature function Q tends to 0 as the aggregator

tends to infinity, firm f ’s ι-markup tends to 1 as the aggregator tends to infinity, implying

that, as we approach the monopolistic competition limit, firm f starts supplying all of its

products.

The relationship between firm scope and the intensity of competition has received much

attention in the recent international trade literature studying multiproduct firms. Much of

that literature has focused on models of monopolistic competition, thereby assuming away the

self-cannibalization effects we emphasize. A common finding in those papers is that firms tend

to respond to trade liberalization by focusing on their core products, i.e., by supplying fewer

products.21 In models with CES demand and product-level fixed costs (Bernard, Redding,

and Schott, 2010, 2011), this is due to the fact that more intense competition reduces variable

profits on all products, and therefore makes it harder to cover fixed costs. In models with

linear demand, more intense competition chokes out the demand for products sold at a high

price (Dhingra, 2013; Mayer, Melitz, and Ottaviano, 2014).

Eckel and Neary (2010) and Eckel, Iacovone, Javorcik, and Neary (2015) develop oligopoly

models with multiproduct firms, linear demand, and quantity competition. Despite the

presence of the self-cannibalization effect which, as mentioned above, is the key driving force

behind our results, they find that firms shed products as competition intensifies.

21Qiu and Zhou (2013) and Nocke and Yeaple (2014) derive more nuanced predictions.
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To understand why their predictions differ from ours, consider the following thought

experiment. Suppose that firm f owns two products, i and j, and contemplates whether to

supply product i in addition to product j. The demand for product k ∈ {i, j} is given by

Dk(pi, pj, H
0), where H0 is a proxy for the intensity of competition. If firm f only sells good

j, then it prices that product at p∗j(H
0), the stand-alone best-response price for that product.

That price is pinned down by the first-order condition

(pj − cj)
∂Dj

∂pj
(∞, pj, H0) +Dj(∞, pj, H0) = 0.

Let π∗j (H
0) be the profit of firm f at that price.

Let pi(H
0) be the lowest price pi for good i such that, if product j is priced at p∗j(H

0) and

industry competitiveness is H0, then good i receives no demand. Note that pi(H
0) is infinite

in our framework. (In the extension developed in Section IV, pi(H
0) is a strictly positive

constant.) One way of finding out whether firm f would find it profitable to supply good i

in addition to good j is to ask whether that firm would benefit from setting pi just below

pi(H
0), while continuing to price good j at p∗j(H

0). The marginal profit on good i is given

by

∂Πf

∂pi
(pi, p

∗
j(H

0)) = Di(pi, p
∗
j(H

0)) + (pi − ci)
∂Di

∂pi
(pi, p

∗
j(H

0)) + (p∗j(H
0)− cj)

∂Dj

∂pi
(pi, p

∗
j(H

0)),

= (p∗j(H
0)− cj)

∂Dj

∂pi
(pi, p

∗
j(H

0))

(
1 +

Di(pi, p
∗
j(H

0))

(p∗j(H
0)− cj)∂Dj∂pi

(pi, p∗j(H
0))

+
(pi − ci)

(p∗j(H
0)− cj)

∂Di
∂pi

(pi, p
∗
j(H

0))
∂Dj
∂pi

(pi, p∗j(H
0))

)

Define

δ(H0) = lim
pi→pi(H0)−

(
(pi − ci)

(p∗j(H
0)− cj)

∣∣∣∣∣
∂Di
∂pi

(pi, p
∗
j(H

0))
∂Dj
∂pi

(pi, p∗j(H
0))

∣∣∣∣∣− Di(pi, p
∗
j(H

0))

(p∗j(H
0)− cj)∂Dj∂pi

(pi, p∗j(H
0))

)
.

(The limit exists in the examples considered below.)

The marginal profit on good i for pi close enough to pi(H
0) is positive if δ(H0) < 1, and

negative if δ(H0) > 1. This means that firm f finds it profitable (resp., unprofitable) to

supply good i if δ(H0) > 1 (resp., δ(H0) < 1). (If δ(H0) = 1, then the test is inconclusive.)

Whether δ(H0) is greater or lower than unity depends on the ratio of margins of the two

goods (selling good i appears more profitable if a high margin can be set on that good) and

on the diversion ratio from i to j (selling good i appears more profitable if that good does

not cannibalize good j too much).

We now use the sufficient statistic δ(H0) to investigate whether an increase in the intensity

of competition raises or lowers the incentives to supply good i. Formally, we ask whether
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δ′(H0) is positive or negative when δ(H0) = 1.

In our model, we have that

− pi − ci
pj − cj

∂Di
∂pi
∂Dj
∂pi

− Di

(pj − cj)∂Dj∂pi

= − pi − ci
pj − cj

h′′iH − (h′i)
2

−h′jh′i
− H

(pj − cj)(−h′j)
,

=
1

(pj − cj)(−h′j)
pi − ci
pi

(ιiH + pih
′
i)−

H

(pj − cj)(−h′j)
.

Taking the limit as pi tends to infinity (which is the choke price in our framework), we obtain

that

δ(H0) =
1

π∗j (H
0)

(µ̄i − 1) .

Since π∗j (H
0) is strictly decreasing in H0, it follows that δ′ > 0. Hence, more intense compe-

tition makes it more likely that product i is supplied.

We now turn our attention to the case where demand is linear. The demand for product

k ∈ {1, 2} (when both products are active) is given by

Dk = 1−H0 − pk + γpl, (l 6= k),

where γ ∈ (0, 1) is a substitutability parameter. H0 > 0 is a proxy that captures how low

rivals’ prices are.

Setting Di equal to zero, we obtain the choke price for product i as a function of pj and

H0:

pi(pj, H
0) = 1−H0 + γpj.

Plugging this choke price into Dj gives us the demand for product j when product i is

inactive:

D̂j = (1 + γ)
(
1−H0 − pj(1− γ)

)
.

Solving the profit maximization problem for good j, we obtain the stand-alone best-response

price p∗j(H
0):

p∗j(H
0) =

1

2

(
cj +

1−H0

1− γ

)
.

The choke price of good i is therefore given by:

pi(H
0) = pi(p

∗
j(H

0), H0) = 1−H0 +
1

2
γ

(
cj +

1−H0

1− γ

)
.

We can now compute the sufficient statistic δ(H0):

δ(H0) =
1

γ

pi(H
0)− ci

p∗j(H
0)− cj

− 0,
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=
1

γ

1−H0 + 1
2
γ
(
cj + 1−H0

1−γ

)
− ci

1
2

(
1−H0

1−γ − cj
) .

Thus, whether δ is increasing or decreasing in the neighborhood of δ(H0) = 1 depends on

whether the choke price pi(H
0) decreases faster than the stand-alone best-response price

p∗i (H
0).22 (The diversion ratio remains constant and equal to γ.) We now compute the

corresponding derivative:

dδ

dH0

∣∣∣∣
δ(H0)=1

=
1

γ

1

(p∗j(H
0)− cj)2

(
p′i(H

0)(p∗j(H
0)− cj)− (pi(H

0)− ci)p∗′j (H0)
)
,

=
1

γ

1

p∗j(H
0)− cj

(
p′i(H

0)− γp∗′j (H0)
)
, since δ(H0) = 1,

=
1

γ

1

p∗j(H
0)− cj

((
−1− 1

2

γ

1− γ

)
+

1

2

γ

1− γ

)
,

=
−1

γ

1

p∗j(H
0)− cj

< 0.

Hence, as H0 increases, the choke price on good i decreases faster than the stand-alone

best-response price on good j, and the firm wants to drop product i.

We can now see why our predictions differ from those in Eckel and Neary (2010) and Eckel,

Iacovone, Javorcik, and Neary (2015). In our framework, there is no horse race between the

choke price and the stand-alone best-response price, because our choke price remains fixed

at pi = ∞ (or pi < ∞ in the extension studied in Section IV). Instead, what drives our

comparative statics is the behavior of the diversion ratio, which is governed by the IIA

property. This diversion ratio is constant under linear demand.

XIII Nested CES and MNL Demands: Type Aggrega-

tion and Algorithm

In this section, we study a multiproduct-firm pricing game with nested CES or MNL demands,

under the assumption that the firm partition F and the nest partition L coincide. Under

nested CES demand, Ψ = log, Φf (Hf ) = (Hf )β, and hj(pj) = ajp
1−σ
j , where β ∈ (0, 1],

aj > 0, and σ > 1 are parameters. Under nested MNL demand, Ψ = log, Φf (Hf ) = (Hf )β,

and hj(pj) = e
aj−pj
λ , where β ∈ (0, 1], aj ∈ R, and λ > 0 are parameters.23 Recall that any

such pricing game has a unique equilibrium (Theorem III).

This section is organized as follows. In Section XIII.1, we prove the formal equivalence

22If there is no H0 such that δ(H0) = 1, then, regardless of H0, either the firm always wants to add product
i, or it never wants to do so.

23The functions Φ and Ψ were introduced in Section VII.
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between pricing games with nested CES (resp. MNL) demand and pricing games with CES

(resp. MNL) demand. We provide an algorithm for computing equilibrium in Section XIII.2.

The proofs are contained in Sections XIII.3 and XIII.4.

XIII.1 Formal Equivalence between Pricing Games with and wit-

hout Nests

(Nested) CES demand. We first argue that a pricing game with nested CES demand is

formally equivalent to a pricing game with CES demand (i.e., where β = 1). Under nested

CES demand, ιj = σ for every j. Hence, rj(µ
f ) = σ

σ−µf cj. We now write firm f ’s profit as a

function of (µg)g∈F :

Πf =

(∑
j∈f (pj − cj)(−h′j(pj))

)
β
(∑

k∈f hk(pk)
)β−1

∑
g∈F

(∑
i∈g hi(pi)

)β
+ (H0)β

,

=

(∑
j∈f (σ − 1)

pj−cj
pj

hj(pj))
)
β
(∑

k∈f hk(pk)
)β−1

∑
g∈F

(∑
i∈g hi(pi)

)β
+ (H0)β

,

= β
σ − 1

σ

µf
(∑

k∈f hk(pk)
)β

∑
g∈F

(∑
i∈g hi(pi)

)β
+ (H0)β

,

= β
σ − 1

σ

µf
((

σ
σ−µf

)1−σ∑
k∈f akc

1−σ
k

)β
∑

g∈F

((
σ

σ−µg

)1−σ∑
k∈g akc

1−σ
k

)β
+ (H0)β

,

= β(σ − 1)
µf

σ

(
1

1−µ
f

σ

)β(1−σ)

T f

∑
g∈F

(
1

1−µ
g

σ

)β(1−σ)

T g + (H0)β
, where T g =

(∑
k∈g

akc
1−σ
k

)β

,

= (σ′ − 1)
µf

σ

(
1

1−µ
f

σ

)1−σ′

T f∑
g∈F

(
1

1−µ
g

σ

)1−σ′
T g + (H0)β

, where σ′ = 1 + β(σ − 1),

= (σ′ − 1)
µf ′

σ′

(
1

1−µ
f ′
σ′

)1−σ′

T f

∑
g∈F

(
1

1−µ
g′
σ′

)1−σ′

T g + (H0)β

, where µg′ =
σ′

σ
µg,
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=
σ′ − 1

σ′
µf ′

(
σ′

σ′−µf ′

)1−σ′
T f∑

g∈F

(
σ′

σ′−µg′

)1−σ′
T g +H0′

, where H0′ = (H0)β,

which is the profit function that obtains in an auxiliary multiproduct-firm pricing game with

CES demand, in which the elasticity of substitution is σ′, the profile of types is (T g)g∈F ,

and the value of the outside option is H0′. It follows that (µg∗)g∈F is an equilibrium profile

of ι-markups of the original game if and only if
(
σ′

σ
µg∗
)
g∈F is an equilibrium profile of ι-

markups in the auxiliary game. Moreover, equilibrium profits in the original game are equal

to equilibrium profits in the auxiliary game.

Note that firm f ’s market share (in value) in the original game given the profile of ι-

markups (µg)g∈F is equal to that firm’s market share in the auxiliary game given the profile

of ι-markups
(
σ′

σ
µg
)
g∈F , since

sf =
1

β(σ − 1)

(∑
j∈f pjh

′
j(pj)

)
β
(∑

j∈f hj(pj)
)β−1

∑
g∈F

(∑
i∈g hi(pi)

)β
+ (H0)β

,

=

(∑
j∈f hj(pj)

)β
∑

g∈F

(∑
i∈g hi(pi)

)β
+ (H0)β

,

=

(∑
j∈f hj(pj)

)β
∑

g∈F

(∑
i∈g hi(pi)

)β
+ (H0)β

,

=

(
1

1−µ
f

σ

)β(1−σ)

T f

∑
g∈F

(
1

1−µ
g

σ

)β(1−σ)

T g + (H0)β
,

=

(
1

1−µ
f ′
σ′

)1−σ′

T f

∑
g∈F

(
1

1−µ
g′
σ′

)1−σ′

T g + (H0′)

.

This implies that (sg)g∈F is an equilibrium profile of market shares in the original game if

and only if it is an equilibrium profile of market shares in the auxiliary game.

Similarly, consumer surplus in the original game given the profile of ι-markups (µg)g∈F is

equal to consumer surplus in the auxiliary game given the profile of ι-markups
(
σ′

σ
µg
)
g∈F :

CS = log

(∑
g∈F

T g
(

σ

σ − µg

)β(1−σ)

+ (H0)β

)
,
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= log

(∑
g∈F

T g
(

σ′

σ′ − µg′

)1−σ′

+H0′

)
.

Hence, equilibrium consumer surplus in the original game is equal to consumer surplus in the

auxiliary game. It follows that equilibrium social welfare in the original game is also equal

to equilibrium social welfare in the auxiliary game.

(Nested) MNL demand. Under nested MNL demand, ιj(pj) = pj/λ for every j ∈ N .

Hence, rj(µ
f ) = λµf + cj for every j. Firm f ’s profit is given by:

Πf =

(∑
j∈f (pj − cj)(−h′j(pj))

)
β
(∑

k∈f hk(pk)
)β−1

∑
g∈F

(∑
i∈g hi(pi)

)β
+ (H0)β

,

= µf
β
(∑

k∈f hk(pk)
)β

∑
g∈F

(∑
i∈g hi(pi)

)β
+ (H0)β

,

= µf
β
(∑

k∈f e
ak−ck
λ

)β
e−βµ

f

∑
g∈F

(∑
i∈g e

ai−ci
λ

)β
e−βµg +(H0)β

,

= µf ′
T f e−µ

f ′∑
g∈F T

g e−µg′ +H0′ ,

where T g =
(∑

i∈g e
ai−ci
λ

)β
and µg′ = βµg for every g ∈ F , and H0′ = (H0)β. Hence, the

original game is formally equivalent to an auxiliary pricing with MNL demand, in which the

price sensitivity parameter is equal to 1, the profile of types is (T g)g∈F , and the value of the

outside option is H0′. It is then straightforward to check that equilibrium market shares,

consumer surplus and social welfare in the original game are the same as in the auxiliary

game.

XIII.2 Algorithm

Numerically solving for the equilibrium of a multiproduct-firm pricing game in an industry

with many firms and products can be a daunting task with standard methods, due to the

high dimensionality of the problem. Exploiting the aggregative structure of the pricing game

allows us to reduce this dimensionality tremendously: Instead of solving a system of |N | non-

linear equations in |N | unknowns, we only need to look for an H > 0 such that Γ(H) = H,

where Γ is the aggregate fitting-in function. Of course, there usually will not be a closed-

form expression for Γ(·), so we still need to compute this function numerically. But Γ(H) is

simple to compute as well, since all we need to do is solve for |F| separate equations, each
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with one unknown. Below, we describe how this general approach can be implemented to

solve a multiproduct-firm pricing game with CES or MNL demands. Thanks to the formal

equivalence results derived in Section XIII.1, this algorithm can also be used for pricing

games with nested CES or MNL demand.

The algorithm uses two nested loops. The inner loop computes Ω(H) = Γ(H)/H for a

given H. The outer loop iterates on H. We start by describing the inner loop. Fix some

H > 0. We first need to compute µf = mf (T f/H) for every f . We have shown that µf

solves equation (7) in the CES case, and equation (8) in the MNL case. These equations can

be rewritten as follows:

0 = ψf (µf ) ≡

µ
f

(
1− σ−1

σ
T f

H

(
1− µf

σ

)σ−1
)
− 1 (CES),

µf
(

1− T f

H
e−µ

f
)
− 1 (MNL).

(xl)

We solve equation (xl) numerically using the Newton-Raphson method with analytical deri-

vatives. The usual problem with the Newton-Raphson method is that it may fail to converge

if starting values are not good enough. This is potentially a major issue, because the value of

Ω(H) used by the outer loop would then be incorrect. The following starting values guarantee

convergence:

µf0 =

max
(

1, σ
(

1−
(
H
T f

) 1
σ−1

))
(CES),

max
(

1, log T f

H

)
(MNL).

In fact, the Newton-Raphson method converges extremely fast (usually less than 5 steps).

Notice, in addition, that this method can easily be vectorized by stacking up the µfs in a

vector. Having computed µf for every firm f , we can calculate Ω(H) (see equation (15)).

The outer loop iterates on H to solve equation Ω(H)− 1 = 0. This can be done by using

standard derivative-based methods. The Jacobian can be computed analytically:

Ω′(H) = − 1

H

(
H0

H
+
∑
f∈F

T f

H
S ′
(
T f

H

))
,

where24

T f

H
S ′
(
T f

H

)
=


µf−1

σ−1
σ
µf
(

1+(σ−1)(µf−1) µf

σ−µf

) (CES),

µf−1

µf(1+µf (µf−1))
(MNL).

We use the value of H that would prevail under monopolistic competition as starting value

(H ini = H0 +
∑

f∈F T
f
(
1− 1

σ

)σ−1
under CES demand, H ini = H0 +

∑
f∈F T

f e−1 under

MNL demand), and we always obtain convergence (usually in about 10 steps).25

24We derive these formulas in Section XIII.3.
25In Breinlich, Nocke, and Schutz (2015), we use this algorithm to calibrate an international trade model

with two countries, 160 manufacturing industries, CES demand and oligopolistic competition.
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XIII.3 Formulas for m′ and S ′ and Preliminary Lemmas

Applying the implicit function theorem to equations (7) and (8) yields:

(CES) m′(x) =

σ−1
σ
m(x)2

(
1− m(x)

σ

)σ−1

1 +
(
σ−1
σ

)2
m(x)2x

(
1− m(x)

σ

)σ−2 , (xli)

(MNL) m′(x) =
m(x)2 e−m(x)

1 +m(x)2x e−m(x)
. (xlii)

Let α = (σ − 1)/σ in the CES case and α = 1 in the MNL case. Note that m =

σ/(σ − (σ − 1)S) in the CES case, and m = 1/(1− S) in the MNL case. Therefore, in both

cases, m = 1/(1− αS), S = 1
α
m−1
m

, and S ′ = m′

αm2 . This implies in particular that

(CES)
1

α

m(x)− 1

m(x)
= S(x) = x

(
1− m(x)

σ

)σ−1

,

(MNL)
m(x)− 1

m(x)
= S(x) = x e−m(x) .

This allows us to obtain expressions for S ′(x), which do not explicitly depend on the terms

(1−m(x)/σ)σ−1, (1−m(x)/σ)σ−2 and e−m(x):

(CES) xS ′(x) =
m(x)− 1

σ−1
σ
m(x)

(
1 + σ−1

σ
m(x)

1−m(x)/σ
(m(x)− 1)

) , (xliii)

(MNL) xS ′(x) =
m(x)− 1

m(x) (1 +m(x)(m(x)− 1))
. (xliv)

Formulas (xliii) and (xliv) are used at the end of Section XIII.2.

Next, we use the fact that m = 1/(1 − αS) to replace m(x) in the right-hand side of

equations (xliii) and (xliv). In the MNL case, we have that:

xS ′(x) =
S(x)

1 +m2(x)S(x)
=

S(x)

1 + S(x)
(1−S(x))2

=
S(x)(1− S(x))2

1− S(x) + S(x)2
.

In the CES case, we have that:

xS ′(x) =
S(x)

1 + α2m2(x) S(x)
1−m(x)/σ

,

=
S(x)

1 + α2 1
(1−αS(x))2

S(x)(1−αS(x))
1−S(x)

,

=
S(x)

1 + α S(x)
(1−S(x))(1−αS(x))

,
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=
S(x)(1− S(x))(1− αS(x))

1− S(x) + αS2(x)
.

Therefore, in both cases:

xS ′ =
S(x)

1 + α S(x)
(1−S(x))(1−αS(x))

, (xlv)

=
S(x)(1− S(x))(1− αS(x))

1− S(x) + αS2(x)
. (xlvi)

Let ε(x) = xS ′(x)/S(x) be the elasticity of S. We prove the following technical lemmas:

Lemma XXV. ε′ < 0.

Proof. Using equation (xlv), we see that

ε(x) =
1

1 + α S(x)
(1−S(x))(1−αS(x))

.

Since S ′ > 0, it follows that ε′ < 0.

Lemma XXVI. S ′′ < 0. Therefore, S is strictly subadditive.

Proof. Using equation (xlv) and the fact that S(x) = x(1−m(x)/σ)σ−1 in the CES case and

m(x) = x exp(−m(x)) in the MNL case, we see that

(CES) S ′(x) =

(
1− m(x)

σ

)σ−1

1 + α S(x)
(1−S(x))(1−αS(x))

,

(MNL) S ′(x) =
e−m(x)

1 +m(x)2S(x)
.

Since m′ > 0 and S ′ > 0, it follows that S ′′ < 0.

Let y > 0, and define ξ : x ∈ R++ 7→ S(x+ y)− S(x)− S(y). Note that limx→0 ξ(x) = 0,

and that

ξ′(x) = S ′(x+ y)− S ′(x) < 0,

since S ′′ < 0. Therefore, ξ is strictly decreasing, and ξ < 0.

XIII.4 Proof of Proposition 6

Proof. The fact that m′ > 0, S ′ > 0, and π′(= m′) > 0 can be seen by inspecting equa-

tion (xli), (xlii), and (xlv).
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Applying the implicit function theorem to equation Ω(H) = 1 yields:

dH∗

dT f
=

S ′
(
T f

H∗

)
H0

H∗
+
∑

g∈F
T g

H∗
S ′
(
T g

H∗

) > 0. (xlvii)

Hence, equilibrium consumer surplus is increasing in types.

Note that

d
(
T f

H∗

)
dT f

=
1

H∗

(
1− T f

H∗
dH∗

dT f

)
=

1

H∗

1−
T f

H∗
S ′
(
T f

H∗

)
H0

H∗
+
∑

g∈F
T g

H∗
S ′
(
T g

H∗

)
 > 0,

and that, for g 6= f ,
d
(
T g

H∗

)
dT f

= − T g

H∗2
dH∗

dT f
< 0.

Applying the chain rule allows us to conclude that firm f ’s equilibrium markup, market share

and profit are increasing in T f and decreasing in T g (g 6= f).

Next, we turn our attention to social welfare. Let xg = T g/H∗ for every g and x0 =

H0/H∗. Social welfare is given by

W ∗ = logH∗ +
∑
g∈F

(m(xg)− 1).

Therefore,

dW ∗

dT f
=

1

H∗

(
dH∗

dT f

(
1−

∑
g∈F

xgm′(xg)

)
+m′(xf )

)
,

=
1

H∗

(
S ′(xf )

x0 +
∑

g∈F x
gS ′(xg)

(
1−

∑
g∈F

xgα
S ′(xg)

(1− αS(xg))2

)
+ α

S ′(xf )

(1− αS(xf ))2

)
,

≥ S ′(xf )

H∗
(
x0 +

∑
g∈F x

gS ′(xg)
) (1 + α

∑
g∈F

xgS ′(xg)

(
1

(1− αS(xf ))2
− 1

(1− αS(xg))2

))
,

=
S ′(xf )

H∗
(
x0 +

∑
g∈F x

gS ′(xg)
) (1 + α

∑
g∈F

sg(1− sg)(1− αsg)
1− sg + α(sg)2

(
1

(1− αsf )2
− 1

(1− αsg)2

))
,

>
S ′(xf )

H∗
(
x0 +

∑
g∈F x

gS ′(xg)
)
1 +

∑
g∈F

α
sg(1− sg)(1− αsg)

1− sg + α(sg)2

(
1− 1

(1− αsg)2

)
︸ ︷︷ ︸

≡ψα(sg)

 ,

where the second line follows from equation (xlvii) and the fact that m = 1
1−αS , and the

fourth line follows from equation (xlvi).
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If we can show that 1+
∑n

i=1 ψα(si) ≥ 0 for every α ∈ (0, 1], n ≥ 2, and (si)1≤i≤n ∈ [0, 1)n

such that
∑n

i=1 si ≤ 1, then we are done. Routine calculations show that ψα(s) ≥ ψ1(s) ≡
ψ(s) for every s. Therefore, all we need to do is show that 1 +

∑n
i=1 ψ(si) ≥ 0 for every

n ≥ 2 and (si)1≤i≤n ∈ [0, 1)n such that
∑n

i=1 si ≤ 1. Note that ψ(s) = s2(s− 2)/(1− s+ s2).

Routine calculations show that:

(i) ψ is concave on [0, 1/2].

(ii) ψ(0) = 0.

(iii) ψ(s) + ψ(1− s) = −1 for every s ∈ [0, 1].

(iv) ψ(s) > −s (resp. ψ(s) < −s) if and only if s < 1/2 (resp. s > 1/2).

(v) ψ is decreasing.

By point (iv), if si ≤ 1/2 for every i, then 1+
∑n

i=1 ψ(si) ≥ 0. Next, let (si)1≤i≤n such that

si > 1/2 for some i. Assume without loss of generality that sn > 1/2. Then,
∑n−1

i=1 si < 1/2.

We claim that
n−1∑
i=1

ψ(si) ≥ ψ

(
n−1∑
i=1

si

)
. (xlviii)

To see this, let x, y ∈ [0, 1/2] such that x+ y ≤ 1/2, and define

ξ : t ∈ [0, y] 7→ ψ(x+ t)− ψ(x)− ψ(t).

By point (ii), ξ(0) = 0. By point (i), ξ′ ≤ 0. Therefore, ξ(t) ≤ 0 for every t. In particular,

ψ(x+ y) ≤ ψ(x) + ψ(y). Property (xlviii) follows by induction on n. Therefore,

1 +
n∑
i=1

ψ(si) ≥ 1 + ψ

(
n−1∑
i=1

si

)
+ ψ(sn) ≥ 1 + ψ(1− sn) + ψ(sn) = 0,

where the second inequality follows by point (v), and the last equality follows by point

(iii).

XIV Comparative Statics

XIV.1 Proof of Proposition 3

Proof. The first part of the proposition follows immediately from equation (ii), Theorem 1

and Lemma I.

Next, we prove that largest and smallest (in terms of the value of H) equilibria exist.

If there is a finite number of equilibrium aggregators, then this is trivial. Next, assume

that there is an infinite number of equilibria. We have shown in the proof of Lemma J
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that Ω(H) > 1 for H low enough and Ω(H) < 1 for H high enough. Therefore, the set of

equilibrium aggregators is contained in a closed interval [H,H], with H > 0. Put

H
∗ ≡ sup

{
H ∈ [H,H] : Ω(H) = 1

}
.

Let (Hn)n≥0 be a sequence such that Ω(Hn) = 1 for all n and Hn −→
n→∞

H
∗
. Since Ω is

continuous on [H,H], we can take limits and obtain that Ω(H
∗
) = 1. Therefore,

H
∗

= max
{
H ∈ [H,H] : Ω(H) = 1

}
is the highest equilibrium aggregator level. The existence of a lowest equilibrium aggregator

follows from the same line of argument.

XIV.2 Proof of Proposition 4

Proof. Given the outside option H0 ≥ 0, H > 0 is an equilibrium aggregator level if and only

if Ω(H,H0) = 1, where

Ω(H,H0) =
H0 +

∑
f∈F

∑
j∈f hj

(
rj
(
mf (H)

))
H

.

Let H0′ > H0 ≥ 0, and note that Ω(H,H0′) > Ω(H,H0) for all H > 0. Let H and H (resp.

H
′

and H ′) be the highest and lowest equilibrium aggregator levels when the outside option

is H0 (resp. H0′). We know from the proof of Lemma J that Ω(H,H0) ≥ 1 for all H ≤ H.

Therefore, for all H ≤ H,

Ω(H,H0′) > Ω(H,H0) ≥ 1.

It follows that, when the outside option is H0′, there is no equilibrium aggregator level weakly

below H. Therefore, H < H ′. The fact that H < H
′
follows from the same line of argument.

This establishes point (iii) in the proposition.

Points (i), (ii) and (iv) follow from the fact that a firm’s profit is equal to its ι-markup

minus one (Theorem 1), mf is decreasing (Lemma I), and rj is increasing (Lemma E).

The result on entry follows from the same line of argument: After entry takes place, Ω

shifts upward.

XIV.3 On the Impact of Production Costs on Equilibrium Con-

sumer Surplus

The goal of this section is to construct a discrete/continuous choice model ((hj)j∈N , H
0) and

a firm partition F such that: (a) The pricing game ((hj)j∈N , H
0,F , (cj)j∈N ) has a unique

equilibrium for every (cj)j∈N ; (b) There exists a marginal cost vector (cj)j∈N and a product

k such that, starting from (cj)j∈N , a small increase in ck raises the equilibrium aggregator

level.
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Fix an arbitrary pricing game ((hj)j∈N , H
0,F , (cj)j∈N ). We start by deriving a necessary

and sufficient condition under which the aggregate fitting-in function shifts upward (locally)

after an increase in cj (j ∈ f).26 In the following, we make explicit the dependence of the

function mf on cj by writing mf (H, cj). We also write rk(µ
f , ck) for every k. Differentiating

equation (14) with respect to cj and µf , and using equation (14) to eliminate H, we obtain:

∂mf

∂cj
= −

mf (mf − 1)(−γ′j)
∂rj
∂cj∑

k∈f

(
γk +mf (mf − 1) ∂rk

∂µf
(−γ′k)

) .
It is straightforward to check that ∂rj/∂cj > 0. Therefore, ∂mf/∂cj < 0.

Next, let Hf (H, cj) ≡
∑

k∈f hk(rk(m
f (H, cj), ck)) be firm f ’s contribution to the aggre-

gator. Note that an infinitesimal increase in cj implies a local upward shift in the aggregate

fitting-in function if and only if ∂Hf/∂cj > 0. Let ξ =
∑

k∈f

(
γk +mf (mf − 1) ∂rk

∂µf
(−γ′k)

)
,

and, as in Section V.2.3, ωf = (µf − 1)/µf , and θk = h′k/γ
′
k for every k. Note that

∂rk
∂µf

= γk
(−γ′k)µf (1−ωfθk)

(see Lemma E). Then,

∂Hf

∂cj
=
∂rj
∂cj

h′j +
∂mf

∂cj

∑
k∈f

∂rk
∂µf

h′k,

=
1

ξ

∂rj
∂cj

(
−(−h′j)ξ +mf (mf − 1)(−γ′j)

∑
k∈f

∂rk
∂µf

(−h′k)

)
,

=
1

ξ

∂rj
∂cj

∑
k∈f

(
−(−h′j)

(
γk +mf (mf − 1)

∂rk
∂µf

(−γ′k)
)

+ (−γ′j)mf (mf − 1)
∂rk
∂µf

(−h′k)
)
,

=
−γ′j
ξ

∂rj
∂cj

∑
k∈f

γk

(
−θj

(
1 +

mf − 1

1− ωfθk

)
+

(mf − 1)θk
1− ωfθk

)
,

=
−γ′j
ξ

∂rj
∂cj

∑
k∈f

γk

(
−θj +

ωf

1− ωf
θk − θj

1− ωfθk

)
.

If f = {1, 2} and j = 1, then ∂Hf/∂c1 > 0 if and only if

−γ1θ1 + γ2

(
−θ1 +

ωf

1− ωf
θ2 − θ1

1− ωfθ2

)
> 0, (xlix)

where ωf = mf (H,c1)−1
mf (H,c1)

, the functions γ1 and θ1 are evaluated at price p1 = r1(mf (H, c1), c1),

and the functions γ2 and θ2 are evaluated at price p2 = r2(mf (H, c1), c2).

26To simplify the exposition, we assume that firm f sets finite prices for all its products. This condition
holds in the example we construct below.
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The next step is to find a product pair (h1, h2) ∈ (Hι)2, a marginal cost pair (c1, c2),

and an aggregator level H∗ > 0 such that firm f satisfies condition (b) in Theorem II,

and condition (xlix) holds. Let product h2 be a CES product with quality a2 and σ = 2:

h(p2) = a2/p2. Let h1(p1) = 1/ log(1 + ep1). Routine calculations show that h1 ∈ Hι,

µ̄1 = µ̄2 = 2, limp1→∞ h1(p1) = 0, and ρ1 is strictly increasing. Therefore, firm f = {1, 2}
satisfies condition (b) in Theorem II. Moreover, using the properties of CES products (θ2 = 2)

allows us to simplify condition (xlix) as follows:

−γ1θ1 + γ2

(
−θ1 +

ωf

1− ωf
2− θ1

1− 2ωf

)
> 0, (l)

Fix c2 > 0 at some arbitrary value. We need to find H∗ > 0, a2 > 0 and c1 > 0 such that

condition (xlix) holds.

Let µf ∈ (1, 2) and ωf = (µf − 1)/µf . Note that, as c1 tends to zero, r1(µf , c1) converges

to a strictly positive real p1 = r1(0, µf ), which is the unique solution of equation ι1(p1) = µf ,

or, equivalently, χ1(p1) = ωf . At the limit, the term in parentheses in equation (l) can then

be rewritten as follows:

ψ(p1) = −θ1(p1) +
χ1(p1)

1− χ1(p1)

2− θ1(p1)

1− 2χ1(p1)
.

Studying the function ψ, we show that ψ(p1) > 0 (and ι1(p1) > 1) for p1 high enough.

Fix such a p1, and let µf ≡ ι1(p1) and ωf = (µf − 1)/µf . Then, by definition of p1,

−θ1(r1(µf , 0)) +
ωf

1− ωf
2− θ1(r1(µf , 0))

1− 2ωf
> 0.

Therefore, by continuity,

−θ1(r1(µf , c1)) +
ωf

1− ωf
2− θ1(r1(µf , c1))

1− 2ωf
> 0

for c1 > 0 small enough. Fix such a c1.

Let us now inspect the expression in the left-hand side of condition (l) (recall that, since

good 2 is a CES product with σ = 2, γ2 = h2/2):

−γ1(r1(µf , c1))θ1(r1(µf , c1)) +
1

2

a2

r2(µf , c2)

(
−θ1(r1(µf , c1)) +

ωf

1− ωf
2− θ1(r1(µf , c1))

1− 2ωf

)
.

Clearly, the above expression is strictly positive for high enough a2. Fix such an a2. Recall

that mf (·, c1) is continuous, and decreases from µ̄f (= 2) to 1 as H increases from 0 to ∞
(Lemma I). Therefore, there exists H∗ > 0 such that mf (H∗, c1) = µf . This concludes the

second step of our construction.
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The last step is to construct a second firm, firm g, such that the pricing game between

firms f and g gives rise to a unique equilibrium, and the equilibrium aggregator level is H∗.

Before constructing firm g, we state and prove the following lemma:

Lemma XXVII. Let (cj)j∈N ∈ RN++, and (hj)j∈N ∈ (H ι)N such that µ̄j = µ̄ < ∞,

limpj→∞ hj(pj) = 0, and ρj is non-decreasing for every j ∈ N . Suppose that a monopo-

list owns all the products in N , and that consumers have access to an outside option H0 > 0.

Then, the monopolist’s profit-maximization problem has a unique solution. The aggregator

level at the monopolist’s optimum, Ĥ(H0), is a strictly increasing function of H0. Moreover,

limH0→0 Ĥ(H0) = 0, and limH0→∞ Ĥ(H0) =∞.

Proof. We know from Lemma H that the monopoly problem has a unique solution for every

H0 > 0. Therefore, the function Ĥ(·) is well defined. The monopolist’s optimal ι-markup,

denoted µ̂(H0) ∈ (1, µ̄f ), is the unique solution of equation (12). It is straightforward to

show, e.g., by applying the implicit function theorem to equation (12), that µ̂ is continuous

and strictly decreasing. It follows that

Ĥ(H0) = H0 +
∑
j∈N

hj(rj(µ̂(H0)))

is strictly increasing in H0. The monopolist earns µ̂(H0) − 1 at its optimum. Let m(·) be

the monopolist’s fitting-in function. Then, by definition of m, m(Ĥ(H0)) = µ̂(H0).

Clearly, limH0→∞ Ĥ(H0) = ∞. By monotonicity, H = limH0→0 Ĥ(H0) exists, and is

non-negative. Assume for a contradiction that H > 0. Then, for every H0 > 0,

µ̂(H0) = m(Ĥ(H0)) < m(H) < µ̄.

For every µ ∈ (1, µ̄) and H0 > 0, let π(µ,H0) be the monopolist’s profit when it sets the

ι-markup µ, and the value of the outside option is H0. Note that, for every H0 > 0 and

µ ∈ (1, µ̄),

π(µ,H0) ≤ µ̂(H0)− 1 ≤ m(H)− 1.

Therefore,

π̄ ≡ sup
H0>0, µ∈(1,µ̄)

π(µ,H0) ≤ m(H)− 1 < µ̄− 1.

Moreover, using the definition of the ι-markup µ and the function γj (j ∈ N ), we can

rewrite π(µ,H0) as follows:

π(µ,H0) = µ

∑
j∈N γj(rj(µ))

H0 +
∑

j∈N hj(rj(µ))
.

Note that, for every µ ∈ (1, µ̄),

π̄ ≥ µ

∑
j∈N γj(rj(µ))∑
j∈N hj(rj(µ))

= µ

∑
j∈N γj(rj(µ))∑

j∈N ρj(rj(µ))γj(rj(µ))
≥ µ

µ̄− 1

µ̄

∑
j∈N γj(rj(µ))∑
j∈N γj(rj(µ))

= µ
µ̄− 1

µ̄
,

115



where the second inequality comes from the fact that, for every j, ρj is non-decreasing and

lim∞ ρj = µ̄/(µ̄− 1) by Lemma A-(f). Taking the limit as µ tends to µ̄ allows us to conclude

that π̄ ≥ µ̄− 1, which is a contradiction.

Firm f satisfies all the assumptions in Lemma XXVII. Therefore, the function Ĥ(·) is a

bijection from (0,∞) to (0,∞), and there exists a unique H0 > 0 such that Ĥ(H0) = H∗.

By definition of Ĥ, this means that

H∗ = H0 +
∑
k∈f

hk(rk(m
f (H∗, c1), ck)).

Next, we construct a firm g such that, when the aggregator level is H∗, firm g’s contribution

to the aggregator is H0. To do so, we rely on the results derived in Section 5. Let g be an

arbitrary multiproduct firm selling only CES products (with a common σ). Denote firm g’s

type by T g > 0. We know that, when the aggregator level is H∗, firm g’s contribution to the

aggregator is S(T g/H∗)H∗. Moreover, S(·) is continuous and strictly increasing, and it is

straightforward to show that limx→0 S(x) = 0 and limx→∞ S(x) = 1. Therefore, there exists

a unique T̂ g such that S(T̂ g/H∗)H∗ = H0.

We can conclude. We have constructed a multiproduct-firm pricing game with two firms,

f and g. By construction, firm f satisfies condition (b) in Theorem II. Since firm g only

sells CES products with a common σ, firm g satisfies condition (a) in Theorem II. Therefore,

the pricing game between firms f and g has a unique equilibrium for every marginal cost

vector for firm f and for every value of T g. When firm f ’s marginal costs are equal to c1

and c2, as defined above, and firm g’s type is T̂ g, the equilibrium aggregator level is H∗. An

infinitesimal increase in the value of c1 induces a local upward shift in the aggregate fitting-in

function. Since that function has a finite limit when H →∞ and has a unique fixed point, it

follows that the equilibrium value of the aggregator increases. Therefore, consumer surplus

increases, and both firms’ profits decrease.

XIV.4 On the Impact of Production Costs on a Firm’s Equilibrium

Profit

The goal of this section is to construct a pricing game in which a firm’s equilibrium profit is

a non-monotonic function of that firm’s marginal cost. We do so numerically.

We work with two single-product firms: N = {1, 2}, and F = {{1}, {2}}. Products are

symmetric: h1(p) = h2(p) = h(p). We use the following function:

h(p) = exp

(
−1

2
p

1
4

)
.

Note that

ι(p) =
1

8

(
6 + p

1
4

)
,
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and that

γ(p) =
p

1
4

6 + p
1
4

exp

(
−1

2
p

1
4

)
=

p
1
4

6 + p
1
4

h(p) < h(p),

so h ∈ Hι. Since h ∈ Hι, it follows that the pricing game ((hj)j∈N , 0,F , (c1, c2)) has an

equilibrium for every (c1, c2).

Since the function

ρ(p) =
h(p)

γ(p)
=

6 + p
1
4

p
1
4

is strictly decreasing, none of the uniqueness conditions derived in Section V applies. We

will therefore need to establish equilibrium uniqueness manually.

In the following, we focus on the special case in which c2 = 0.01 and c1 ∈ [5, 50]. We first

show numerically that the pricing equilibrium is unique for every c1 ∈ {5, 10, 15, . . . , 45, 50}.
Note that, for every c1, Hmc(c1), the monopolistic competition aggregator level (given c1

and c2) is an upper bound for the set of equilibrium aggregator levels. Moreover, Hmc(c1) is

strictly decreasing in c1. It follows that Hmc(5) is an upper bound for the set of equilibrium

aggregator levels for any c1 ≥ 5. Numerically, we find that Hmc(c1) ' 0.62. We can therefore

narrow down our search for equilibrium aggregator levels to the interval (0, 0.62).

Figure 2: Aggregate Fitting-in Functions for c1 ∈ {5, 10, 15, . . . , 45, 50}

Figure 2 plots aggregate fitting-in functions for c1 ∈ {5, 10, 15, . . . , 45, 50}. The graph has
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been constructed with a step size of 0.001. The blue line is the 45-degree line. The curves

represents aggregate fitting-in functions for different values of c1. We can see that each

curve intersects the 45-degree line only once on (0, 0.62), which shows that the equilibrium is

unique. (Since limp→∞ h(p) = 0, the aggregate fitting-in functions also intersect the 45-degree

line at H = 0. Of course, H = 0 cannot be an equilibrium aggregator level.)

Next, we show that firm 1’s equilibrium profit is non-monotonic in c1. For every c1 ∈
{5, 6, 7, . . . , 49, 50}, we compute the equilibrium aggregator level and firm 1’s equilibrium

profit. Figure 3 depicts the relationship between firm 1’s profit and c1. That relationship

is clearly non-monotonic. (Of course, we have not shown that the equilibrium is unique for

every c1 ∈ {5, 6, . . . , 49, 50}\{5, 10, . . . , 45, 50}, but Figure 3 clearly shows that firm 1’s profit

is also non-monotonic on {5, 10, . . . , 45, 50}.)

Figure 3: Equilibrium Profit of Firm 1
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XV Table of Symbols and Notations

Market-level notations

H Aggregator, sufficient statistic for consumer surplus

H0 Outside option

Γ(H) Aggregate fitting-in function

Ω(H) Γ(H)/H, aggregate share function

N Set of products

F Set of firms

Firm-level notations

µf Firm f ’s ι-markup

mf (H) Firm f ’s fitting-in function

µ̄f maxk∈f µ̄k, the highest ι-markup that firm f can sustain

ωf (µf − 1)/µf

T f Firm f ’s type (CES / MNL demands)

Product-level notations

H The set of C3, strictly decreasing and log-convex functions

Hι The set of functions in H that satisfy Assumption 1

hk Exponential of indirect subutility derived from product k

−h′k/hk Conditional demand for product k

hk/(H
0 +

∑
j∈N hj) Choice probability for product k

ιk pkh
′′
k(pk)/(−h′k(pk)), elasticity of monopolistic competition demand

µ̄k limpk→∞ ιk(pk), the highest ι-markup that product k can sustain

γk h′2k /h
′′
k

ρk hk/γk

θk h′k/γ
′
k

χk (ιk − 1)/(ιk)

νk(pk) ιk(pk)(pk − ck)/pk, ι-markup on product k

rk(µ
f ) ν−1

k (µf ), pricing function

pmck rk(1), product k’s price under monopolistic competition

p
k

inf{pk > 0 : ιk(pk) > 1}
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