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WHEN AND HOW THE PUNISHMENT MUST FIT THE CRIME∗
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In repeated normal-form (simultaneous-move) games, simple penal codes (Abreu, Journal of Economic The-
ory 39(1) (1986), 191–225; and Econometrica 56(2) (1988), 383–96) permit an elegant characterization of the set
of subgame-perfect outcomes. We show that in repeated extensive-form games such a characterization no longer
obtains. By means of examples, we identify two types of settings in which a subgame-perfect outcome may be
supported only by a profile with the property that the continuation play after a deviation is tailored not only to
the identity of the deviator but also to the nature of the deviation.

My object all sublime
I shall achieve in time
To let the punishment fit the crime,
The punishment fit the crime;
And make each prisoner repent
Unwillingly represent
A source of innocent merriment,
Of innocent merriment!
W. S. Gilbert (1885), The Mikado

1. INTRODUCTION

Many popular applications of game theory are naturally modeled as simultaneous-move stage
games, such as the Cournot oligopoly model of collusion. But other interesting applications have
a dynamic structure whose stage game interactions are more naturally represented by nontrivial
extensive-form stage games. Examples include the interaction between government and the
private sector in the time-inconsistency literature, between upstream and downstream firms in
the vertical relations literature, between bidders in open-outcry auctions, between firms that first
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invest or choose standards and then compete, between proposer and responders in bargaining
games, and between principal and agent in contracting games. Such applied models often feature
a socially desirable (or “cooperative”) outcome that is inconsistent with equilibrium in a one-
shot game because of opportunistic actions available to players, but that might be attainable in a
repeated game. Economists are often interested in exploring how changes in institutions and/or
repetition of the game might allow the more desirable outcomes to be supported as equilibria
(see, e.g., the seminal work of Friedman, 1971). But with a few exceptions,2 such analysis has
been largely confined to repeated normal-form games, where all players are modeled as moving
simultaneously in the stage game.

When players are sufficiently patient, one may ignore the detailed dynamic structure within
the stage-game interaction and apply standard folk theorem arguments (Wen, 2002). The reason
is that even a small difference in continuation values will dominate any short-term gain for
patient players, so deviations are relatively easy to deter. However, applied theory is often
concerned with the impact of a change in institutions or the environment on the set of equilibrium
outcomes, and such an analysis is meaningful only for impatient players. In this article, we show
that for impatient players, the dynamic structure of the stage game can be important and should
not be neglected.

The literature has so far directed surprisingly little attention toward the study of repeated
extensive-form games with impatient players. For applications of repeated simultaneous-move
games, the techniques developed by Abreu (1986, 1988) are central. Abreu (1988) shows that
any pure-strategy subgame-perfect equilibrium outcome can be supported by a set of simple
punishment strategies called simple penal codes: If a player, i say, deviates from the proposed
equilibrium play in a given period, in the next period, players switch to player i’s worst equilib-
rium play (called i’s optimal penal code). A similar rule applies to any player who deviates from
play during an optimal penal code. In other words, the continuation play after a deviation by a
player is independent of the nature of the deviation, depending only on the identity of the devi-
ator. This result vastly simplifies the task of finding the set of equilibria that can be supported
in repeated simultaneous-move games: One needs only to characterize a worst equilibrium for
each player, and from there one can proceed to fill in all other equilibria that can be supported
by using these punishment strategies. Abreu’s result has been correspondingly important for
applications employing normal-form stage games.

But what about applications that involve extensive-form stage games? In this article, we
show that a similar simplification is not available for characterizing the set of subgame-perfect
equilibrium outcomes when the stage game has a nontrivial dynamic structure. We begin by
discussing the appropriate restrictions that simple penal codes should satisfy in this case. We then
present two settings in which simple penal codes can fail to support behavior as an equilibrium
that is supportable with more complicated strategies (for a given discount factor). The forces
driving the equilibrium incentives in these settings are intuitive and natural.

Consider a deviation by some player in a repeated simultaneous-move game. Since the stage
game is a simultaneous-move game, the other players can respond only in the next period.
Abreu’s (1988) results rely on the observation that, in repeated simultaneous-move games,
every subgame is strategically equivalent to the original repeated game.3 Hence, the worst
punishment is simply the worst subgame-perfect equilibrium of the original game. Consider
now a deviation in a repeated extensive-form game. In contrast to normal form games, the
other players may be able to respond not only in the next period but also within the same
period. Moreover, the deviation may lead to a subgame that is not strategically equivalent to
the original game. Consequently, the appropriate notion of simple penal code for a repeated
extensive-form game is not obvious. Nonetheless, for any history that ends at the end of a

2 Repeated extensive-form games have been analyzed in the relational contracting literature (Levin, 2003), in the
policy games literature (Athey et al., 2005), and in the vertical relations literature (Nocke and White, 2007).

3 This observation is a direct implication of the property that every subgame’s initial node is at the beginning of some
period.
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period, the associated subgame is strategically equivalent to the original repeated game. This
suggests that any definition of a simple penal code should have the feature that after a player
deviates from the candidate equilibrium, subsequent play beginning in the next period should
be independent of the precise nature of the deviation.

Our two sets of examples show that there are equilibria in repeated extensive-form games that
cannot be supported by continuation play satisfying this property: Even though it is feasible to
play the same outcome path after two different deviations starting in the next period, sustaining
a candidate equilibrium outcome may require that different outcome paths be played.

Say that an action for a player ismyopically suboptimal if, given the specified behavior for the
other players, that action is not optimal for that player when payoffs from future periods are
ignored. Simple penal codes are not sufficient to support all equilibria in repeated extensive-
form games because some equilibria require the use of within-period myopically suboptimal
“punishments” to ensure that deviations are not profitable. In contrast, in repeated normal-form
games, the sequential rationality of “within-period” punishments is not an issue. In each of our
examples, the within-period punishment is myopically suboptimal for the potential punisher(s)
but is required to sustain the desired equilibrium.

In our first set of examples, the need for different continuations arises because the interests of
the deviator and the potential punisher are aligned, though imperfectly. Many important settings
have this structure—for example, policy games, models of relational contracting, and models
where players engage in repeated investment or production. In such settings, using continuation
play to reward a player for carrying out myopically suboptimal within-period punishment of
the earlier deviator may necessarily also reward the deviator. Consequently, the rewards for
the punisher (and hence the outcome path following the deviation) may have to be fine-tuned
to the particular deviation chosen by the deviator. Within-period punishment is valuable after
some, but not all, deviations, depending on how effective and costly is within-period punishment
after a particular deviation. We first analyze a simple example to illustrate the difficulty and
then show how the same logic affects a repeated game of bilateral investment with hold-up in
the spirit of Klein et al. (1978) and Grossman and Hart (1986).

In our second set of examples, we highlight a contrasting problem, which arises because
players moving after a deviator are required to coordinate to inflict effective within-period
punishment. In contrast to the first set, where complications arise when interests are aligned,
here, difficulties occur when the interests of the players required to inflict punishment are in
conflict. The simplest case has three players, and sustaining the desired equilibrium requires
that the two later movers both inflict within-period punishment on the first mover in the
event of a deviation. Think, for instance, of a situation where a deviation is profitable if and
only if at least one other player ‘accepts’ it. Such a structure is common in many important
settings. Examples include colluding upstream firms selling through downstream firms (Nocke
and White, 2007), attempted expropriation by a sovereign power (where citizen groups can
cooperate to successfully resist expropriation, as in Weingast, 1995, 1997), bargaining over a
series of proposals where a majority vote is sufficient for acceptance (Baron and Ferejohn,
1989), or attempted entry when an entrant requires more than one customer to break even
(as in Rasmusen et al., 1991; Segal and Whinston, 2000). The conflict of interest between
the two potentially enforcing players in these cases means that it is not possible to provide the
maximum “reward” to both the punishers in any given equilibrium. Intuitively, the continuation
equilibrium chosen (and hence the “reward” that each punisher receives) must depend on the
degree of sacrifice which the punisher makes in inflicting the myopically suboptimal punishment.
Which of the two later moving players receives more of the “carrot” in future play optimally
depends on for which of them it was more costly to apply the “stick.” Again, we first analyze
a simple example and then turn to the classic “naked exclusion game” of Rasmusen et al.
(1991) and Segal and Whinston (2000) to illustrate the operation of optimal punishments in that
context.

Apart from Rubinstein and Wolinsky (1995), Sorin (1995), Wen (2002), and Mailath and
Samuelson (2006), the repeated-game literature has focused on repeated normal-form games,
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FIGURE 1

THE GAME !1

ignoring the dynamic structure within the stage game. Rubinstein and Wolinsky (1995) present
some examples illustrating the difference between the set of subgame-perfect equilibrium pay-
offs of repeated extensive and normal-form games for patient players when the standard full
dimensionality condition of Fudenberg and Maskin (1986) does not hold. Sorin (1995) discusses
the implications of the different information that players have available across periods in re-
peated extensive, instead of normal, form games. Wen (2002) extends the arguments of Abreu
(1988) to prove a folk theorem for repeated sequential-move games under a weaker condi-
tion than Fudenberg and Maskin’s (1986) full dimensionality condition. Finally, Mailath and
Samuelson (2006, section 9.6) prove a folk theorem for repeated extensive form games via an
extension of the tools of Abreu et al. (1990). None of these papers is concerned with penal codes
or with characterizing the set of subgame-perfect equilibrium payoffs with impatient players.

2. THE PUNISHMENT SHOULD FIT THE CRIME

“Is it her fault or mine?
The tempter or the tempted—who sins the most?”
William Shakespeare, Measure for Measure, Act 2, Scene 2.

In this section, we highlight the value of tailoring the punishment to fit the deviation in games
where the potential deviator and punisher have a commonality of interest. Thus our games
have a strong coordination flavor. The most effective punishments can be complicated in such
settings, because it is difficult both to punish the deviator and reward the punishing player for
applying the costly punishment.

We first present a simple stylized example to illustrate the issues that arise. For ease of
exposition, we focus on equilibria in pure strategies. In the following subsection, we will present
a more interesting application to a game of repeated investment and hold-up.

2.1. A Simple Example. We begin with the extensive-form game !1, presented in Figure 1.
Consider the perfect information subgame reached after both players choose A. The unique
subgame-perfect equilibrium of this subgame has player I playing M and player II playing ℓ

(after M). In the subgame, player II, of course, prefers that player I plays L.4 Thus, in any

4 The subgame of !1 following both players choosing A has an interpretation as an entry game between a potential
entrant (player I) and an incumbent (player II). The entrant can decide to stay out (play L), enter with product
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subgame-perfect equilibrium of !1, AA yields payoffs of (6, 6). As the payoffs of the two players
are perfectly correlated across the three subgame-perfect equilibria (involving the play of AA,
BB, or CC at the first information set), !1 has a coordination game structure.

The game !1 is repeated once, and payoffs are summed over the two periods. The aim of
the example is to show the need to tailor the punishment to fit the deviation in situations
where players’ interests are closely aligned. To this end, note that in the second period, the
payoffs of the two players in any subgame-perfect equilibrium are, by construction, identical.
It is therefore impossible to punish (or reward) one player without simultaneously doing the
same to the other.

We will show that the choice of L by player I in the first period can be supported only if the
responses to each of the two attractive deviations for player I, M and R, differ. Note first that
the payoffs in this example have been chosen so that the variation in second-period payoffs
alone is insufficient to deter player I from playing M when player II chooses ℓ, her myopic best
reply: Player I’s first-period incentive to deviate by playing M is then 6, whereas the largest
punishment the second period can impose is the profile CC, with associated loss of payoff of 4.5

However, if player II can be induced to play r following a deviation to M, the benefit to player
I of M will be drastically reduced (from 6 to 1). The trick is to provide appropriate incentives to
prevent II from myopically optimizing, that is, in specifying a higher continuation payoff after
Mr than after Mℓ. At the same time, the continuation play after Mr must not ignore I’s original
deviation. This motivates the following specification of second-period play: Play AA after L, BB
after Mr, and CC after Mℓ and R. It is straightforward to check that this specification supports
Lr as equilibrium first-period choices.

In the profile described in the previous paragraph, different continuation equilibria are spec-
ified after I’s deviation to M and to R. We have already seen that the second-period play of BB
after Mr is needed to make II’s choice of r optimal. At the same time, a play of BB after R does
not provide a sufficient disincentive for I, so R must be followed by CC.

The play of L in the first period cannot therefore be sustained by a “simple” penal code in
which continuation play is independent of the particular deviation chosen by player I. As we
have seen, the play of L is sustained by a more complex strategy profile that employs different
punishments after different deviations.

The discussion above shows that there is a subgame-perfect equilibrium of the repeated game
in which, in the first period, both players choose A, and then player I chooses L. (The only issue
we have not addressed is a deviation by I or II to B or C in the first period. Player II clearly
cannot benefit from such a deviation. For player I, the period-1 payoff from this deviation is 0,
the same as from Mr in !1, and the second-period play is the same as well, and so the deviation
is not profitable.)

To conclude our discussion of this example, it is useful to compare our analysis with that of an
analysis of the repeated normal form of !1. The normal form is given in Figure 2. Treating the
simultaneous-move normal form of Figure 2 as the stage game, the profile in which (AL, Ar) is
played in the first period and (AR, Aℓ) in the second, with any deviation by player 1 resulting
in CC in the second period, is a subgame-perfect equilibrium of the repeated game. However,
this profile is a subgame-perfect equilibrium only because the simultaneity of moves means that
there is no subgame beginning with II’s choice between ℓ and r, and so subgame perfection does
not require that choice to be optimal.

line M (play M), or enter with product line R (play R). (One can also interpret M as small-scale entry and R as large-
scale entry.) Following entry with product M, the incumbent can choose to acquiesce (play ℓ) or fight (play r). We
assume here for simplicity that fighting is possible only when product M is chosen, but one can also allow fighting after
choice of R with, for example, payoffs (−1,1) without changing any of the conclusions reached in the analysis below.

5 This conclusion would not change if we allowed for mixed strategies. The most severe punishment that can be
inflicted involves playing the mixed-strategy equilibrium with probabilities 2/11, 3/11, and 6/11 on actions A, B, and C,
respectively, resulting in an expected payoff of 12/11 for each player.
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C

AL 1, 11 1, 11 0, 0 0, 0

AM 6, 6 1, 5 0, 0 0, 0

AR 3, 3 3, 3 0, 0 0, 0

B 0, 0 0, 0 4, 4 0, 0

C 0, 0 0, 0 0, 0 2, 2

FIGURE 2

THE (REDUCED) NORMAL FORM OF !1

2.2. Application: Bilateral Investment and Hold-Up. We now consider a simplified version
of the classic hold-up model with bilateral investment in the spirit of Klein et al. (1978) and
Grossman and Hart (1986). Here, the standard Nash bargaining stage is replaced by a simple
noncooperative bargaining model where one player makes a take-it-or-leave-it offer to the
other player. The stage game has three stages:

Stage 1 (Investment) Both players simultaneously decide whether or not to make a relation-
specific investment. The cost of the investment is c > 0. Unless both players have
made the investment, the stage game ends, with player i’s payoff being −c if i ∈ {1, 2}
had invested and zero otherwise. If both players have made the investment, the game
proceeds to the next stage.

Stage 2 (Offer) Player 1 makes a take-it-or-leave-it offer x ≥ 0 to player 2.
Stage 3 (Acceptance) Player 2 decides whether to accept or reject the offer. If the offer is

accepted, payoffs are (B − x − c, x − c); otherwise payoffs are (−c,−c), where B is the
investment revenue.

The interesting case arises when investment is efficient: B > 2c. Despite the efficiency of
investment, it is well known that ex post bargaining over terms leads to inefficiently low
investment—here, the one-shot game has a unique subgame-perfect equilibrium with no in-
vestment by either player, resulting in payoffs (0, 0).

2.2.1. The infinitely repeated game. Now consider the infinite repetition of the stage game
just described, with δ denoting the common discount factor. We characterize the best stationary
equilibrium for player 2 and show that this equilibrium depends on whether behavior is restricted
to simple penal codes. An implication is that, for some parameter values there are equilibrium
behaviors that cannot be supported using simple penal codes.

For simplicity, we focus on player 2’s best stationary equilibrium.6 This equilibrium (with and
without simple penal codes) involves in each period either (i) no investment by either player
(as in the static equilibrium), resulting in payoffs (0, 0), or (ii) investment by both parties, with
player 1 making a subsequent offer of x̂, which is accepted by player 2, resulting in payoffs
(B − c − x̂, x̂ − c). As each player can ensure himself a payoff of 0 by not investing, if an
investment equilibrium exists, player 1’s offer x̂ must satisfy B − c ≥ x̂ ≥ c.

2.2.2. The stationary equilibrium maximizing player 2’s payoff. We first analyze the features
of stationary equilibria without the restriction to simple penal codes. Since infinite repetition
of the static equilibrium (i.e., the subgame-perfect equilibrium of the stage game), resulting in
no investment, is trivially a subgame-perfect equilibrium of the repeated game, we turn to the

6 For ease of exposition (and without loss of generality), we assume that the play is stationary along the equilibrium
path, and also that—following a deviation—continuation play in all subsequent periods is stationary as well. We do not
impose any form of stationarity when showing the inadequacy of simple penal codes.
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incentive constraints for any equilibrium involving investment by both parties and an accepted
offer of x̂ in every period.

There are two possible ways in which a deviation by player 1 to an offer less generous than x̂
can be punished. First, and standardly, deviations could be deterred by the threat of reversion to
the static equilibrium in all future periods. Such reversion may well be sufficient to deter a small
deviation by player 1 (to an offer x not much smaller than x̂) because his short-run benefit from
such a deviation is small. But such a punishment scheme may not deter a large deviation (to a
small offer x) since the short-term benefit of having a very low offer accepted may be too large.
So second, it may be necessary to have player 2 reject player 1’s offer (leaving both players
with a payoff of −c this period). This second strategy will be useful to deter large deviations by
player 1 to low offers that are particularly attractive to player 1 and relatively unattractive to
player 2.

But with this second strategy, we need to consider player 2’s incentives, since it is myopically
suboptimal for player 2 to reject any offer from player 1 once investment costs are sunk.
Therefore, for player 2 to be willing to punish player 1 by rejecting his offer, she must be
subsequently rewarded by a sufficiently attractive continuation play. This may work for low
offers from player 1 but may be insufficient to induce player 2 to reject offers x close to
x̂, which must therefore be followed by reversion to the no-investment equilibrium. Thus,
intuitively, there may be a need to fine-tune the continuation play to the size of the deviating offer
player 1 makes.

These considerations suggest that the strategy profile supporting the largest possible x̂ as a
stationary equilibrium offer requires the following continuation play after a deviant offer x < x̂
by player 1:7! If the deviant offer satisfies x ∈ [x̃, x̂), where x̃ is a (still-to-be-determined) cutoff, then

player 2 accepts it (which is the myopically optimal decision). This acceptance is fol-
lowed by the infinite reversion to the static (no-investment) equilibrium from next period
onward.! If the deviant offer satisfies x ∈ [0, x̃), then player 2 rejects it. This rejection is followed by
reversion to an accepted offer of x̂ in every future period. If player 2 were to deviate by
accepting the deviant offer, play would revert to the static (no-investment) equilibrium in
all future periods.

Player 1 will find it unprofitable to make a deviant offer x ∈ [x̃, x̂) only if the smallest deviant
offer x̃ (inducing the same continuation play) is unprofitable, that is,

B − c − x̂
1 − δ

≥ B − c − x̃.

This relation implies the following lower bound on x̃, the lowest deviant offer that player 2 can
accept:

x̃ ≥ x̂ − δ(B − c)
1 − δ

.(1)

Player 2 will be willing to reject a deviant offer x ∈ [0, x̃) only if

−(1 − δ)c + δ(x̂ − c) ≥ (1 − δ)(x̃ − c).

7 A deviation by player 1 to an offer x > x̂ is myopically suboptimal and therefore does not need to be punished:
Continuation play is as if player 1 had not deviated. Similarly, continuation play in future periods is not affected in case
one player deviates by not investing as such a deviation is myopically suboptimal.



322 MAILATH, NOCKE, AND WHITE

This equation implies an upper bound on x̃, the largest deviant offer that player 2 is willing to
reject:

δ(x̂ − c)
1 − δ

≥ x̃.(2)

Combining inequalities (1) and (2), we obtain, as a necessary condition, an upper bound on
x̂, namely,

x̂ ≤ δ

1 − δ
(B − 2c).(3)

For players to be willing to invest, their individual rationality constraints for investment must
also be satisfied, which requires that each player’s payoff be nonnegative. So we must also
have

x̂ ≥ c and B − x̂ ≥ c.(4)

Thus, if (x̃, x̂) describes the stationary equilibrium maximizing player 2’s payoff, x̂ is the largest
offer satisfying (3) and (4). Since

δ

1 − δ
(B − 2c) ≥ c ⇐⇒ δ ≥ c

B − c
≡ δ′,

if δ < δ′, there is no such x̂.8 If δ ≥ δ′, then

x̂ = min
{

δ

1 − δ
(B − 2c), B − c

}
.

Let δ′′ be the smallest value of δ at which x̂ = B − c, that is,

δ′′ ≡ B − c
2B − 3c

.

For δ ∈ (δ′, δ′′), (3) holds with equality and so both (1) and (2) hold with equality, pinning down
x̃. It is straightforward to verify that x̃ ∈ (0, x̂) in this case.

We are now in a position to describe the best equilibrium for player 2 (the verification is
straightforward).

PROPOSITION 1. Suppose δ ∈ (δ′, δ′′). The stationary equilibrium that maximizes player 2’s pay-
off has the following structure: The equilibrium offer x̂ is given by

x̂ := δ

1 − δ
(B − 2c).

The cutoff x̃ is given by

x̃ := δ(x̂ − c)
1 − δ

∈ (0, x̂).

The equilibrium has two phases, “invest” and “don’t invest,” and begins in the “invest” phase. In
the “invest” phase,

8 Indeed, if δ < δ′, then there is no equilibrium with investment, since even an offer x̂ = δ(B − c) (the largest offer
consistent with x̃ ≤ 0) violates player 2’s individual rationality constraint in (4) above.
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(1) on the path of play, both players invest and player 1 offers x̂ to player 2,
(2) player 2 accepts all offers x ≥ x̃, and
(3) player 2 rejects all offers x < x̃.

Play stays in the invest phase as long as both players invest, and the last offer satisfies x /∈ [x̃, x̂),
which player 2 accepts if x ≥ x̂ and rejects if x < x̃. Otherwise, play switches to the don’t invest
phase, in which the static no-investment equilibrium is played in every period.

The equilibrium described in Proposition 1 does not have a simple penal code structure, since
deviations by player 1 to relatively generous offers x ≥ x̃ lead to different continuation play
than deviations to less generous offers x < x̃.

However, for δ ≥ δ′′, we can take x̃ = x̂ = B − c, since for large δ,

B − c ≤ δ(x̂ − c)
1 − δ

.

(It is straightforward to verify that the relevant incentive constraints hold.) In this case, the
simple penal code in which player 2 rejects all offers less than B − c (and accepts all larger
offers), followed by the play of the stationary equilibrium maximizing player 2’s payoff from
next period onward, supports the same equilibrium outcome.

2.2.3. Simple penal code for δ ∈ (δ′, δ′′). We have just seen that in this game, a simple penal
code can support the stationary equilibrium that maximizes player 2’s payoff as long as δ ≥ δ′′,
and the only equilibrium involves no investment for δ ≤ δ′. We now investigate the efficacy
of simple penal codes for intermediate values of δ ∈ (δ′, δ′′). We both prove that x̂ cannot be
supported using simple penal codes and characterize xSPC, the largest offer that player 2 can
receive in any stationary equilibrium supported by a simple penal code.

Fix a candidate stationary equilibrium offer x̄. There are two candidates for a simple penal
code in this setting:

(1) Any deviating offer x ̸= x̄ triggers reversion to the static no-investment equilibrium from
next period onward. Since this static equilibrium is the worst not only for player 1 but
also for player 2, player 2 will accept any offer x > 0.

(2) Any deviating offer x ̸= x̄ is followed by the continued play of the equilibrium maximizing
2’s payoff from next period onward (providing player 2 with maximal incentives not to
deviate from the prescribed response). If x > x̄, equilibrium may prescribe that player
2 accepts the offer, as such a deviation is myopically suboptimal for player 1. If x < x̄,
however, equilibrium must prescribe that player 2 reject the offer (as otherwise the
deviation would be profitable for player 1). Failure by player 2 to do so leads to no
investment in the future, the worst possible punishment.

Consider the first simple penal code. Player 1 will have no incentive to make a deviant offer
x < x̄ only if he has no incentive to make an arbitrarily small deviant offer, that is,

B − c − x̄
1 − δ

≥ B − c,

which implies the following upper bound on x̄:

x̄ ≤ δ(B − c).(5)

It is straightforward to check that the profile in which both players invest, player 1 always makes
the offer δ(B − c), which is accepted (as is any lower off-the-equilibrium path offer), and any
deviation by player 1 to an inferior offer results in future no investment is an equilibrium for
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δ ∈ (δ′, δ′′). Since δ > δ′, x̄ = x̂ violates (5) and the offer x̂ cannot be supported as an equilibrium
using the first simple penal code.

Now consider the second simple penal code, and let v2 be the maximum of player 2’s dis-
counted sum of payoffs over all subgame-perfect equilibria.9 Let x† be the maximum equilibrium
offer accepted by player 2 in an equilibrium giving payoffs v2. Note that x̄ ≤ x†, for any station-
ary equilibrium offer x̄, and x† − c ≥ (1 − δ)v2. In the period in which x† is offered, player 2 will
be prepared to reject any offer x ∈ [0, x†) only if

−c + δv2 ≥ x† − c,

which implies

−c + δv2 ≥ (1 − δ)v2,

that is,

(2δ − 1)v2 ≥ c.

If 2δ ≤ 1, this inequality is clearly impossible. What if 2δ > 1? Since δ < δ′′ (and 2δ − 1 is
increasing in δ), we evaluate the above inequality at δ′′ to obtain the condition v2 ≥ 2B − 3c,
which is also impossible since v2 ≤ (B − 2c)/(1 − δ) < (B − 2c)/(1 − δ′′) = 2B − 3c.

Hence, if δ ∈ (δ′, δ′′), the best simple penal code involves the play of the no-investment
equilibrium in all periods following a deviant offer by player 1. The largest offer that player 2
can receive in any equilibrium supported by a simple penal code is δ(B − c) =: xSPC, which is
strictly smaller than x̂.

2.2.4. Discussion. When stationary equilibria cannot be supported by simple penal codes,
they have an interesting feature. If the offerer deviates from the expected price by shading just
slightly, the responder will accept (shrug it off) but will no longer invest in the relationship (one
can also think about the parties as walking away from the relationship and then receiving outside
options of zero on the spot market). By contrast, if the offerer deviates from the expected price
by making a much lower offer, then instead the—perhaps insulting—offer is rejected, but in
the expectation that next period the investment relationship will be reestablished on better
terms. The structure of this equilibrium might at first glance be considered counterintuitive,
since one might think that the relationship would be more likely to continue if the shading of
the price is only slight and not large. But if the shading of price is only slight, it is expensive to
induce the responder to reject the offer to inflict punishment; punishment is instead inflicted by
a return to the no-investment equilibrium next period. If the shading is larger, the deviation is
particularly profitable for the responder, and, at the same time, it is relatively cheap to inflict
within-period punishment by refusing the offer (which is rather unattractive). But the offer
will nevertheless be refused only in the expectation that this will lead to the relationship being
resumed, on better terms, the following period. Moreover, the offerer’s credible incentive to
inflict large costs by failing to make a mutually beneficial trade in a period of deviation (“cutting
off one’s nose to spite one’s face”) can help to sustain a price above that which would otherwise
be possible. So the equilibrium yields a prediction about the pattern of punishment strategies
in relationships with hold-up: Other things being equal, small deviations result in walking away
whereas large deviations result in a costly standoff and then resumption of trade. By contrast,
a simple penal code would involve the responder taking the same action—in particular, walk
away—independently of how low the offer he receives is and never rejecting a myopically
beneficial offer—no matter how paltry—in a period when costs are sunk.

9 We can take the maximum, instead of the supremum, because the set of subgame-perfect equilibrium payoffs is
compact.
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NOTES: The choice x for player I ranges over the nonnegative integers, {0, 1, . . . , 10}.

FIGURE 3

THE EXTENSIVE-FORM GAME !2

3. THE REWARD SHOULD FIT THE TEMPTATION

“You oughtn’t to yield to temptation.”
“Well somebody must, or the thing becomes absurd.”
Anthony Hope, The Dolly Dialogues

We have just highlighted how the value of deviation-dependent punishments can arise from
the commonality of interest between the punisher and the punished. We now examine how the
value of deviation-dependent punishments arises for a very different reason—because there is
a conflict of interest between two players who are not supposed to acquiesce to a deviation by a
third player. As in the first set of examples, we begin with a simple stylized example to illustrate
the main force at work, which is that continuation play must be specified such that the reward
to each player is adapted to the sacrifice that they made in inflicting within-period punishment.
We then provide an application to a more complex game of greater applied interest—in this
case, a repeated version of the “Naked Exclusion” game analyzed by Rasmusen et al. (1991)
and Segal and Whinston (2000).

3.1. A Simple Example. The stage game for our second simple example is the extensive
form !2, presented in Figure 3. We interpret the choice of x ∈ {0, 1, . . . , 10} by player I as a
bribe to player II (with 10 − x the bribe to player III).10 If player I chooses the “cooperative”
action C, then the stage game ends. If player I chooses instead to offer a bribe of 10 to players
II and III (with x representing the split), players II and III then simultaneously decide whether
to accept or reject the bribe. (Notice that for player I to receive his maximum payoff of 10,
it suffices that only one of the other two players accepts the bribe; hence, he needs to bribe
only one of them to accept and their interests are conflicting.) The stage game then ends, and
all actions become common knowledge. The game has many subgame-perfect equilibria, but
they all share some common features: Player I attempts to bribe the other players instead of
behaving cooperatively, and both players II and III accept any positive bribe offered. Moreover,
the set of subgame-perfect equilibrium payoffs is given by

{(10, x, 10 − x) : x ∈ {0, 1, . . . , 10}}.

The conflictual nature of the game is reflected in the fact that the payoffs of players II and III
are negatively correlated across the equilibria of the stage game.

10 The extensive form !2 has a natural interpretation as a bargaining game where player I has a pie of 20 to be split
between himself and two others, with decisions being taken by majority voting.
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We are interested in the possibility of using these multiple equilibria to construct an equi-
librium of the once-repeated game where player I behaves cooperatively in the first period by
playing C.

We begin by arguing that it is impossible to support this cooperative play by I in the first
period using continuation play in the second period that is independent of the nature of I’s
bribe. If player I deviates by attempting the bribe x, then equilibrium requires that players II
and III both reject player I’s bribe. For II to reject, her continuation payoff from rejection must
be at least x. If the continuation play is independent of I’s bribe, then II’s continuation payoff
after rejection must be at least 10 (otherwise II would accept a bribe of 10, undermining I’s
incentive to play C). But at the same time, for III to reject, his payoff must be at least 10 − x,
again for all x. And this requires that III’s continuation payoff after rejection is also 10, which
is impossible.

On the other hand, it is easily verified that the following profile is a subgame-perfect equilib-
rium: In the first period, player I plays cooperatively; if he were to deviate all bribes would be
rejected by both players II and III. In the second period, after cooperative play in the first period,
player I bribes at some level x in the second period (any level works). If player I deviated in
the first period, and his bribe x was rejected by both II and III, then player I offers the same
bribe in the second period, which is accepted by both II and III. (If I offers a deviant bribe in the
second period, both players II and III accept.) If only one player k ∈ {II, III} accepts a deviant
first-period bribe, then in the second period, player I offers the bribe that leaves player k with
0. (It is irrelevant whether player k accepts the bribe in the second period; the other player
of course accepts.) Finally, if both players II and III accept the first-period bribe, an arbitrary
continuation equilibrium is played (since both players accepting is a simultaneous deviation by
II and III, these payoffs are irrelevant for the purposes of checking for subgame perfection).

3.2. Application: Naked Exclusion. In this section, we analyze a repeated version of the
classic “naked exclusion” model of Rasmusen et al. (1991) and Segal and Whinston (2000). The
game has three long-lived players, an incumbent monopolist (I) and two buyers (B1 and B2).
Each period, the same incumbent faces a challenge from a different short-lived entrant who is
more efficient than the incumbent. For simplicity, we do not model the potential entrants as
players. In each period, the incumbent can choose whether or not to offer exclusive dealing
contracts to the two buyers. Exclusive dealing contracts last one period, and the incumbent can
make a transfer payment to the buyers to compensate them for signing an exclusive dealing
contract. The incumbent’s exclusive dealing offers are publicly observable, and buyers make
their acceptance/rejection decisions simultaneously. If at least one buyer signs an exclusive
dealing contract for the current period, no entry occurs, and the incumbent subsequently charges
the monopoly price to each buyer, earning a profit πm on each. If no buyer has signed an exclusive
dealing contract for the current period, the entrant enters the market, resulting in zero profit
for the incumbent and an increase in rents of S for each buyer.

The stage game proceeds as follows:

Stage 1 I chooses between offering no exclusive dealing contracts, N, and a pair (x1, x2) ∈
[0,∞)2, where xi ≥ 0 is the offered transfer payment to Bi in return for signing an
exclusive dealing contract. If I chooses N, then the period ends, and payoffs for I and
the two buyers are (0, S, S); otherwise the game proceeds to Stage 2. (Here, S denotes
the increase in buyer surplus due to entry.)

Stage 2 Facing public offers (x1, x2), B1 and B2 simultaneously choose whether to accept the
offer (ai = 1) or not (ai = 0). If at least one buyer accepts the offer, payoffs are (2πm −
a1x1 − a2x2, a1x1, a2x2), where πm is the monopoly profit that the incumbent can extract
from each buyer; if both buyers reject the offer, payoffs are (0, S, S).

We assume that payoffs satisfy 2πm > S > πm > 0. The first inequality ensures that the in-
cumbent’s monopoly profit is sufficiently large so that it is worthwhile for him to offer a large
enough “bribe” to one buyer to make it a dominant strategy for that buyer to accept the
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exclusive dealing offer. The second inequality implies that entry is efficient. Although the stage
game has multiple subgame-perfect equilibria, there is no entry in any of these equilibria, and
aggregate payoffs are 2πm. The best equilibrium for buyer B1 (buyer B2) involves I offering
(S, 0) (respectively, (0, S)), making it a dominant strategy for that buyer to accept the offer and
resulting in incumbent profit of 2πm − S. These are also the worst equilibria for I. The best
equilibrium for I is the one in which I offers (0, 0) and both buyers accept the offer, resulting in
incumbent profit of 2πm.

3.2.1. The infinitely repeated game. We now investigate the effects of the infinite repetition
of this game. We are interested in determining the conditions under which it is possible to
sustain the play of N (no exclusive dealing, and thus entry) in each period as an equilibrium of
the game. In this equilibrium, the incumbent’s payoff is zero, and each buyer receives S in every
period. The common discount factor is denoted δ ∈ (0, 1).

We first consider sustaining the perpetual play of N by a simple penal code. The simple penal
code prescribes the following behavior when I deviates by making offers (x′

1, x′
2):! If x′

1 + x′
2 > 2πm, both buyers accept. (Since one buyer is accepting, it is myopically optimal

for the other to do so as well, so no dynamic incentives need be provided. Moreover, such
deviations are unprofitable for the monopolist, so no further punishment is required.)! If x′

1 + x′
2 ≤ 2πm, both buyers reject. (If one buyer deviates and accepts the offer, then,

in all future periods, a static equilibrium is played in which that deviant buyer receives a
zero payoff.)! In either case, this is followed by the play of N in all future periods.

Note that this simple penal code maximally punishes the deviating I and maximally rewards
the two buyers for rejecting offers, given that the rewards cannot be made dependent on the
deviant offers.

Facing deviant offers (x′
1, x′

2) such that x′
1 + x′

2 ≤ 2πm, buyer Bi is willing to reject his offer x′
i

if and only if

x′
i ≤ S

1 − δ
.

As long as x′
i + x′

−i ≤ 2πm, this incentive constraint has to hold for any x′
i ≤ 2πm, and the

perpetual play of N can be sustained by a simple penal code if and only if

δ ≥ 2πm − S
2πm ≡ δ̂SPC.

We now show that, using more general continuations, the perpetual play of N can be sustained
for even lower discount factors, namely, if and only if

δ ≥ 2πm − S
4πm − S

≡ δ̂∗ < δ̂SPC.

The strategy profile differs from the simple penal code above only in the event in which I’s
deviant offers (x′

1, x′
2) are such that max(x′

1, x′
2) ∈ (S, 2πm] and x′

1 + x′
2 ≤ 2πm. Such deviant

offers are rejected by both buyers and are followed, from the next period onward, by play of the
equilibrium that maximizes the payoff of the buyer, Bj , who received the larger deviant offer.
As we show below, in this continuation equilibrium, buyer Bj gets a per-period payoff of 2πm,
whereas buyer B−j and the incumbent I both get zero. So, I is maximally punished.

Turning to the buyers’ incentive constraints following such deviant offers, note first that
buyer B−j receives S this period (and zero in all future periods) from rejecting his offer but
only x′

−j ≤ 2πm − x′
j < S in this period (and zero in all future periods) from accepting. So his
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incentive constraint is satisfied for all discount factors. Buyer Bj is willing to reject his offer if
and only if

x′
j ≤ S + δ

1 − δ
2πm.

This inequality has to hold for all x′
j not exceeding 2πm, so Bj ’s incentive constraint is satisfied

if and only if δ ≥ δ̂∗.
It remains to show that, for any δ ≥ δ̂∗, there is an equilibrium that gives buyer Bj a per-

period payoff of 2πm.11 Along the equilibrium path, I offers xj = 2πm to Bj and x−j = 0 to B−j ,
both buyers accept, and no entry takes place. (Note that neither buyer has a myopic incentive
to deviate, so equilibrium may as well prescribe play of the same equilibrium in all future
periods following a deviation by a buyer.) Consider now a deviation by I to offers (x′

1, x′
2).

If x′
1 + x′

2 > 2πm, both offers are accepted, and the same equilibrium (giving I a zero payoff)
is played forever after. (Accepting the offer is myopically optimal for each buyer, provided
the other buyer does so as well, so no dynamic incentives need to be provided.) If instead
x′

1 + x′
2 ≤ 2πm, both offers are rejected (so that entry occurs, yielding a payoff of S to each

buyer in the current period); equilibrium play from the next period onward is exactly the same
as was prescribed following the same vector of deviant offers in the nonsimple punishment
scheme for sustaining the perpetual play of N above. As our analysis above shows, both buyers
have an incentive to reject I’s deviant offers if δ ≥ δ̂∗. Hence, I does not have a profitable
deviation.

3.2.2. Discussion. In this extended example, “no exclusive dealing” can be supported as an
equilibrium outcome in a repeated version of the naked exclusion game. On the equilibrium
path, the incumbent is not supposed to offer exclusive dealing contracts to his buyers—but if he
does, both of the buyers must reject these offers in order to inflict within-period punishment on
the incumbent and reduce his temptation to deviate. Inducing such rejection does not require
dynamic incentives if the incumbent offers a payment for exclusive dealing of less than S, since
(when rejection by the other buyer is expected), rejection is myopically optimal. But inducing
rejection of an exclusive dealing offer with a payment of more than S does require dynamic
incentives since such rejection would decrease the buyer’s current profit. Buyers must therefore
be rewarded in the continuation game for rejecting such a tempting exclusive dealing contract.

In contrast to the first set of examples, in this setting, there is no trade-off between rewarding
the punisher and punishing the deviator, since equilibria that reward the punishers (exclusive
dealing or equilibria with entry) can be constructed that yield zero profits to the incumbent.
There is, however, a trade-off between rewarding the two buyers who must both reject the
deviant offers. The most that both buyers can receive at the same time is S per buyer (when
entry occurs in every period), so the best simple penal code involves the play of this equilibrium
after any deviation by the incumbent. But there exist equilibria with exclusive dealing that can
provide more than S to one buyer (and less than S to the other one and zero to the incumbent).
Thus, if the incumbent makes a deviation involving a bribe of more than S to one buyer
(and less than S to the other, otherwise the deviation is unprofitable), the optimal punishment
scheme provides a larger “carrot” to the buyer most tempted. In this setting, as in Section
2, the continuation play again optimally depends on the particular deviation chosen, but this
time because the reward provided must fit the temptation resisted (or the sacrifice made) when
rejecting the deviation.

The principle that the reward provided should be tailored to the sacrifice is natural. This
is particularly so in the dynamic variant of the repeated naked exclusion game set out above,
where, instead of entrants being short-lived, the entrant replaces the incumbent in the period

11 There does not exist an equilibrium in which Bj earns more than 2πm per period, because both I and B−j can
ensure themselves a payoff of at least zero, and when there is no exclusive dealing each buyer receives only S < 2πm.
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following rejection of all exclusive dealing contracts and hence becomes the new incumbent,
offering exclusive dealing contracts against a new entrant in the following period.12 In this
dynamic game, if an incumbent deviates by offering an asymmetric set of exclusive dealing
contracts (more than S to one buyer, less than S to another), then it is natural that the entrant,
when he becomes the incumbent next period, plays a continuation equilibrium that provides
larger rewards to the buyer that made a greater sacrifice in enabling the entrant to replace the
old incumbent.13

4. CONCLUSION

A major concern in any long-run interaction is the provision of incentives to discipline
the behavior of agents. In simple interactions, such as the repeated prisoners’ dilemma, an
opportunistic deviation is immediately profitable (since the other players cannot immediately
react) and can only be deterred by appropriate specifications of continuation play (or future
punishments). In many other applications, however, interactions are intrinsically dynamic, and
opportunistic deviations are only profitable if they are validated by the complicit behavior of
at least one other player. Moreover, this complicit behavior is often myopically optimal (since,
for example, it may involve accepting a “bribe”).

When agents are impatient, deterring deviations may therefore require preventing the com-
plicit behavior, which requires specifying deviation-dependent continuations. In this article, we
have indicated two different reasons why deviation-dependent continuations can be necessary:
(1) Settings where rewarding a potentially complicit player for not being complicit also rewards
the original deviator and (2) settings where there are multiple potentially complicit players and
there is a trade-off in dividing rewards for not being complicit among these players.

We have illustrated these causes by providing applications to a repeated bilateral investment
game with hold-up in the spirit of Klein et al. (1978) and Grossman and Hart (1986), and to a
repeated naked exclusion game modeled on Rasmusen et al. (1991) and Segal and Whinston
(2000). But we expect that the same phenomena will arise in many other interesting applications.
The first cause of the need for deviation-dependent continuations—the commonality of interest
between potential punisher and punishee—arises in many environments, such as the interaction
between parent and child, between legislators of the same political party, between a monetary
authority and the public; and between principal and agent in relational contracting. The second
cause—the trade-offs between rewarding different punishing parties—arises in settings such as
multiplayer bargaining or lobbying; collusion in vertically related markets, a sovereign dealing
with multiple constituencies, and a defendant dealing with multiple claimants. As we hope our
examples show, examining the particular structure of optimal punishment in an applied setting
can yield new insights as to ways to make existing institutions work better.
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