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1 Formal Model, Bargaining, and Computation

In this section, we provide a more detailed description of parts of the main paper: the model

presented in Section 2, the calculations of merger bargaining outcomes, the proof of Proposition

1, and our computational algorithm.

1.1 Formal Model Description

We follow the timing displayed in Figure 1 and the notation established in Section 2 of the

main paper. Let the number of �rms be n � 2, the set of �rms be I = f1; � � � ; ng, and the
industry state be the vector of their capital stocks K = (K1; � � � ;Kn). Firms are restricted

to an integer number of possible capital levels, with the maximal capital level K chosen to

be non-binding. Since a �rm may have zero capital, let S � f0; 1; 2; :::;Kg be the admissible
values of Ki and let Sn be the state space. The industry�s state at the beginning of a period is
its ex ante state while its state just after the entry stage and before the Cournot competition

stage is its interim state.

The logic of backward induction guides our presentation of the model. The �rms take their

environment and the antitrust policy faij (�)gij2J as given, where J � fijji; j 2 I; i 6= jg is
the set of pairs of �rms, and aij(K) is the probability that the authority approves merger Mij

when proposed in ex ante state K. Therefore we �rst derive conditions for their symmetric

Markov perfect equilibrium behavior given that their goal is to maximize the expected net

present value (ENPV) of their future cash �ows. We then turn to the antitrust authority�s

problem of maximizing welfare. We consider authorities that vary in their goals and their

ability to commit.
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Firm i�s ex ante value function in ex ante stateK, Vi (K), is the beginning-of-period ENPV

of its future cash �ows. Similarly, �rm i�s interim value Vi (K) gives the ENPV of its future

cash �ows starting from interim state K. The transition from the ex ante state to the interim

state is the outcome of the merger bargaining game between �rms and, if a merger has been

proposed, the merger approval decision of the antitrust authority. The transition from the

interim state to next period�s ex ante state is the outcome of �rms�investment decisions and

the subsequent (stochastic) depreciation of capital.

Throughout we assume that the �rms play Markov perfect equilibrium strategies that the

antitrust policy and the speci�ed merger protocol induce. To understand the �rms�Markov

perfect equilibrium, �x the antitrust authority�s merger approval policy and let fVi(�)gi2I be
the value functions that give the ENPV of the �rms� future cash �ows at the beginning of

period t + 1 as a function of the ex ante state K. Given these value functions, each �rm i

uses backward induction to calculate, for each interim state K0 2 Sn; its optimal period-t
investment decision, which must be a best reply to its competitors�investment policy choices.

Given this Nash equilibrium in investment policies conditional on the beginning of period t+1

value functions fVi(�)gi2I ; each �rm can calculate for all interim states K0 its interim values

V i (K
0) conditional on fVi (�)gi2I .

Based on this vector of interim values and given the antitrust authority�s approval policy,

the �rms negotiate over mergers. These negotiations, conducted in accordance with the pro-

tocols speci�ed in Section 1.2 below, determine for each ex ante state K the probability of

each possible merger Mij being proposed, as well as the ex ante values fV̂i (�)gi2I in period

t. If fV̂i (�)gi2I = fVi (�)gi2I , then the ex ante value functions, the interim value functions,

the investment functions, and the equilibrium merger bargaining outcomes together form a

Markov perfect equilibrium for the industry with respect to the �xed merger policy.

We now present the model and our notion of Markov perfect equilibrium in more detail.

Following the logic of backward induction, we begin by describing �rms�investment policies.

1.1.1 Firms�Investment Policies

At the investment stage, each �rm i, after privately learning the Ki independent draws of its

capital augmentation costs (c1; :::; cKi) and the single independent draw of its green�eld cost

cg, unilaterally decides how many units of capital (if any) to add.1

Firm i�s investment policy is denoted �i(�jK) : f0; 1; � � � ;K � Kig � Sn ! [0; 1]. Prior

to the realization of its cost draws, policy �i gives the probability �i(kijK) of �rm i adding

ki 2 f0; 1; :::;K�Kig units of capital in interim state K. Recall that at the end of each period
each unit of capital depreciates with probability d, so if �rm i enters the depreciation stage

1Each �rm also decides on the quantity it produces. This decision is embedded in �rm i�s single-period pro�t

function � (Ki;K�i) because we assume competition in the product market is static Cournot.
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with Ki units of capital, then the probability it exits the stage with K 0
i units of capital is

�(K 0
ijKi) =

( �
Ki
K0
i

�
(1� d)K0

idKi�K
0
i if K 0

i 2 f0; 1; :::;Kig
0 otherwise

: (1)

Given that �rm i follows investment policy �i; the probability of �rm i in interim state K

leaving the period with K 0
i 2 S units of capital is therefore given by the transition function

� i(K
0
ijK) =

K�KiX
m=0

�i(mjK)�(K 0
ijKi +m): (2)

Consider now �rm i�s optimal investment policy for a given realization ~c of its (Ki + 1)-

length vector of cost draws. Let cKi(�j~c) denote the resulting cost function where cKi(kij~c) is
the minimum cost to add ki units of capital with cost draws ~c. Let CKi be the set of possible

cost draws ~c and let hKi be the associated density that the distributions F and G of the cost

draws determine. For a given draw ~c; cost function cKi(�j~c), ex ante value function Vi(�); and
rival transition functions ��i (induced by rival investment policies ��i), �rm i chooses ki so

as to maximize its expected continuation value minus its investment cost:

max
ki2f0;1;:::;K�Kig

�cKi(kij~c) + �
X
K02Sn

�(K 0
ijKi + ki)

24Y
j 6=i

� j(K
0
j jK)

35Vi(K0);

where � < 1 is the discount factor that the �rms and the antitrust authority use. Let k�i denote

the solution to this optimization problem (which, generically, is unique) and de�ne !(kij~c;K)
to be the indicator function with value 1 if ki = k�i and 0 otherwise. Firm i�s investment policy

therefore is

�i(kijK) =
Z
CKi

!(kij~c;K)hKi(~c)d~c; (3)

for ki 2 f0; 1; :::;K �Kig: This gives rise to �rm i�s expected investment cost in interim state

K:

Eci(K) =
Z
CKi

X
ki2f0;1;:::;K�Kig

!(kij~c;K)cKi(kij~c)hKi(~c)d~c: (4)

Firm i�s interim value in state K is its static pro�t less its expected investment cost plus

its ENPV in the continuation game; that is,

V i(K) = �(Ki;K�i)� Eci(K) + �
X
K02Sn

24 nY
j=1

� j(K
0
j jK)

35Vi(K0); (5)

where � (Ki;K�i) is �rm i�s single-period pro�t from static Cournot competition in the product

market.2

2Note that the static pro�t function is symmetric in that it depends only on the �rm�s own capital stock Ki

and the vector K�i of its rivals�capital stocks, and any permutation of K�i does not a¤ect the �rm�s pro�t.
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1.1.2 Merger Bargaining and Merger Outcomes

We now fold backwards to the merger bargaining, merger approval, and entry stages. If no

merger occurs in ex ante state K, then the interim state remains the same as the ex ante

state. If merger Mij occurs, then with probability 1/2 the industry transits to interim state

K0 in which �rm i becomes the merged �rm with capital stock K 0
i = Ki+Kj , an entrant with

capital K 0
j = 0 replaces �rm j, and all other �rms�capital stocks remain unchanged. With the

complementary probability 1/2 �rm j becomes the merged �rm and �rm i is replaced by the

entrant. This probabilistic transition rule, in conjunction with the restriction to symmetric

equilibrium strategies (as de�ned below), ensures that the steady state distribution over Sn

is symmetric. The �rms, seeking to maximize their ENPVs, negotiate what mergers (if any)

occur in accordance with the protocols de�ned in Section 2 for the model with two �rms, and

Section 4 for the model with three �rms.

Given the authority�s approval policy faij(�)gij2J and the interim value functions
�
V i (�)

	
i2I ,

the �rms play subgame perfect strategies in the bargaining stage. As a general matter,

given an extensive form merger bargaining protocol3, the antitrust authority�s approval pol-

icy faij(�)gij2J , and interim values
�
V i (�)

	
i2I , we can solve for subgame perfect equilibrium

bargaining strategies, f�i(�)gi2I . The outcome arising from these strategies determines the

probability  ij (K) that each possible merger Mij is proposed in a given state K, each �rm

i�s ex ante expected proposal costs denoted by E i [�jK], and the �rms�ex ante values in that
state, fVi (K)gi2I . As well, these merger proposal probabilities and the antitrust authority�s
approval policy together determine the transition probability T0(K;K0) from ex ante state

K to interim state K0. Here, we treat these calculations as a black box. In Section 1.2 of

this Online Appendix we explicitly present for n = 2 and n = 3 the essential details of these

calculations for the merger protocols that we use in the main text. As an illustration, when

n = 3, the formula for the ex ante value of �rm i in ex ante state K is

Vi(K) = V i(K) +
1

2

8<:�E i [�jK] + X
�2fij;ikg

 �(K)a�(K)��(K)

9=;+  jk(K)Xjk
i (K): (6)

Here, Xjk
i (K) � aij(K)[V (Ki;Kj + Kk; 0) � V (Ki;K�i)] is the externality of the proposal

of merger Mjk on outsider �rm i, and so the last term on the right-hand side of (6) is the

expectation of the externality imposed on �rm i from Mjk. The interim value V i(K), which is

the �rst term on the right-hand side, is �rm i�s disagreement value in the bargaining with other

�rms. The second term is �rm i�s half of the expected merger gains (net of expected proposal

costs) from mergers involving �rm i. Note that this formula de�nes a mapping from interim

3Recall that the two-�rm Nash bargaining process speci�ed in Section 2 (and used in Section 3) can equiva-

lently be represented as a non-cooperative bargaining game in which one of the two �rms is randomly selected

to make a take-it-or-leave-it o¤er to the other, so that it is nested in the three-�rm Burguet-Caminal bargaining

protocol speci�ed in Section 4.
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values
�
V i (�)

	
i2I to ex ante values fVi (�)gi2I . More generally, given a bargaining protocol

and a merger approval policy, the equilibrium bargaining strategies give rise to a mapping V

from interim values to ex ante values:

fVi (�)gi2I = V(
�
V i (�)

	
i2I) (7)

Consequently, (7) and (5) together implicitly de�ne the Bellman equation for the ex ante values

fVi (�)gi2I .

1.1.3 Markov Perfect Equilibrium

De�nition of Markov perfect equilibrium. Given the authority�s merger policy faij(�)gij2J ,
if the merger bargaining strategies f�i(�)gi2I constitute a subgame perfect equilibrium of the

bargaining protocol given the interim values
�
V i(�)

	
i2I , and if the �rms� investment poli-

cies f�i(�)gi2I , the �rms� ex ante value functions fVi(�)gi2I ; and the �rms� interim values�
V i (�)

	
i2I satisfy equations (3), (5), and (7), then the collection (f�i (�)gi2I ; f�i(�)gi2I ;

fVi(�)gi2I ;
�
V i (�)

	
i2I) constitutes a Markov perfect equilibrium that policy faij(�)gij2J in-

duces.

Restriction to symmetric equilibria. Our models focus on symmetric environments,
in which a �rm�s static pro�t and investment cost distribution depend only on its capital level

Ki and the vector of rival capital levels K�i. As well, any permutation of its rivals�capital

stocks leaves �rm i�s static pro�t and investment cost distribution unchanged. In addition,

merger proposal costs and merger blocking costs are independent of the identities of the �rms

proposing a merger. Finally, the bargaining protocols we specify are symmetric in the sense

that a �rm�s opportunities do not depend on its identity.4

Given these symmetric environments, we restrict attention to symmetric (Markovian)

merger approval policies. A merger approval policy faij(�)gij2J is symmetric if for any stateK,
there exists a single-valued function a(�) such that we can write aij(K) = a((Ki;Kj);K�ij) =

a((Ki;Kj)
p;Kp0

�ij), where (Ki;Kj)
p is any permutation of the capital stocks Ki and Kj of the

two merging �rms, and Kp0

�ij is any permutation of the capital stock vector of their rivals.

In addition, we restrict attention to Markov perfect equilibria for the �rms in which a �rm�s

investment policy and value function are symmetric, as are the merger proposal probability

functions arising from the merger bargaining protocol�s subgame perfect equilibrium. For-

mally, �rm i�s investment policy �i is symmetric if �i(kijK) = �(kijKi;K�i) = �(kijKi;K
p
�i),

where Kp
�i is any permutation of its rivals� vector of capital stocks.

5 A similar condition

de�nes symmetry for �rm i�s ex ante and interim value functions Vi(�) and V i(�): The equi-
4For example, in the non-cooperative implememtation of the two-player Nash bargaining solution used in

Section 3, each �rm has a 1/2 probability of being the proposer.
5Observe that a symmtric investment policy function gives rise to a symmetric capital stock transition

function for the �rm, satisfying � i(K0
ijK) = �(K0

ijK) = �(K0
ijKi;K

p
�i) for any permutation p.
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librium outcome of the merger bargaining induces symemtric merger probability functions if

 ij (K) =  (Kij ;K�ij) =  (Kp
ij ;K

p0

�ij) for all permutations p and p
0.6

State transition matrix and industry steady state distribution. The investment
and depreciation stage transitions �(�) combined with the merger bargaining, merger approval,
and entry stage transitions T0(�) determine the transitions from the ex ante state in one period
to the ex ante state at the start of the next period. For example, when n = 2, given symmetric

merger policy a (�) and a symmetric Markov perfect equilibrium that it induces, the probability
that the industry transitions from state K at the beginning of period t to state K0 at the

beginning of period t+ 1 is

T
�
K;K0� = (1� a12(K) 12(K))

�
�(K 0

1jK1;K2; �)�(K
0
2jK2;K1; �)

�
+
1

2
a12(K) 12(K)f�(K 0

1j0;K1 +K2; �)�(K
0
2jK1 +K2; 0; �)

+�(K 0
1jK1 +K2; 0; �)�(K

0
2j0;K1 +K2; �)g:

To calculate welfare measures and statistics of the industry�s dynamics we need the long-

run, steady state distribution that results from implementation of merger policy a (�).
For example, consider again the case in which n = 2. Let 
 : S2 ! f1; 2; : : : ; (K + 1)2g

be an invertible mapping that maps the two-dimensional matrix of states K into a vector of

states. Then, for every pair of states fK;K0g 2 S2 � S2, de�ne the
�
K + 1

�2 � (K + 1)2

transition matrix T̂ to have element T̂ (!;!0) = T
�

�1 (!) ;
�1 (!0)

�
at row ! (the state

at the beginning of the period) and column !0 (the state at the beginning of the next period)

where state ! = 
 (K) and state !0 = 
 (K0).

Let P̂ be a length (K + 1)2 row vector whose elements are non-negative and sum to one,

i.e., P̂ is a probability distribution on the state space S2 transformed by 
: If P̂ T̂ = P̂; then
P̂ is a steady state distribution that the policy a (�) induces over the industry�s state space. If
P̂ is unique, then, for any probability vector P,

P̂ = lim
t!1

P T̂ T̂ T̂ � � � T̂| {z }
t times

; (8)

i.e., no matter what the initial probability distribution P on states is, the industry converges

to the steady state distribution P̂.7 Rewrite P̂ as a
�
K + 1

�
� (K + 1) matrix �P where its

element in row (K1 + 1) and column (K2 + 1),

�P (K1;K2) � P̂ [
 (K)] ; (9)

is the steady state probability of the industry being in state K:

6A merger bargaining protocol can be said to be symmetric if given any symmetric interim value functions and

any symmetric merger approval rule it induces symmetric merger proposal probability functions and symmetric

ex ante value functions.
7 In our model we cannot guarantee that, for some positive integer t; every element of T̂ t is positive, i.e., we

cannot guarantee that T̂ is a regular Markov transition matrix. If it were regular, then P̂ would be unique.
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While for n > 2 the formulas for T̂ and �P are more complex than these n = 2 examples,

their construction has the same basic structure.

1.1.4 Antitrust Policy and Welfare Metrics

In this section we specify the distinct choice problems that a �commitment�authority faces

and that a �no-commitment�authority faces. We then de�ne a variety of consumer value and

aggregate value welfare metrics that the antitrust authority may use as its objective function

W . Throughout the discussion
�
 ; �; V; V

	
are the symmetric policy functions of the Markov

perfect equilibrium that a (�) induces the �rms to follow.
Optimal commitment policy. The antitrust authority commits to a pure action aij(K) 2

f0; 1g for each possible merger Mij in each state K 2 Sn so as to maximize either (i) ex ante
welfareW (K0) in a speci�c state K0 2 Sn or (ii) some measureW of �average�ex ante welfare

across all states K 2 Sn: For example, if n = 3; a policy to encourage the development of an
infant industry might maximize W (0; 0; 0): On the other hand, a general purpose policy for

mature industries might maximize average steady state welfare WSS where the ex ante wel-

fare W (K) of each state K 2 Sn is weighted by its steady state probability �P (K) : Observe
that the infant industry objective is a weighted average with weight one placed on ex ante

welfare in state (0; 0; 0). Therefore de�ne Z (fW (K)gK2Sn) to be whatever weighted average
the antitrust authority selects as its objective.

Let A be the class of admissible commitment policies a0 (�) : Restricting A is necessary

because, even in the computationally easiest case of n = 2; the class of all possible symmet-

ric commitment policies contains 2
(K+1)K

2 elements. For K = 20, this makes the problem

computationally intractable. The optimal commitment policy a (�) is therefore

a (�) = argmax
a0(�)2A

Z (fW (K)gK2Sn) (10)

where the value of Z (�) implicitly varies with the Markov perfect equilibrium that a0 (�) induces
the �rms to play.

If the merger bargaining strategies f�i(�)gi2I constitute a subgame perfect equilibrium
of the bargaining protocol given the interim values

�
V i(�)

	
i2I , the �rms� investment poli-

cies f�i(�)gi2I , the �rms� ex ante value functions fVi(�)gi2I ; and the �rms� interim values�
V i (�)

	
i2I satisfy equations (3), (5), and (7) for all states K 2 Sn, and the merger approval

policy a (�) satis�es (10), then the collection
�
�; �; V; V

	
and a(�) are respectively a Markov

perfect equilibrium for the industry and an optimal commitment policy for the �commitment�

antitrust authority.

Markov perfect policy. In this case, the antitrust authority acts instead as an additional
player that, unable to commit, makes its approval decision in every state K so as to maximize

its welfare criterion going forward, given the �rms�Markov perfect equilibrium play in the

continuation game. The resulting policy a (�) and the �rms� equilibrium actions together
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determine the welfare criterion�s ex ante and interim values, W (K) and W (K) for each state

K 2 Sn.
A given merger policy a (�) is a Markov perfect merger policy if at every state it satis-

�es the one-step deviation principle when the �rms play the industry Markov perfect equi-

librium
�
�; �; V; V

	
that approval policy a (�) induces. Given that �rms i and j have pro-

posed to merge in state K and that the authority�s realization of its random blocking cost

is bij , welfare in the event that the authority approves the merger is W (K1 : : : ;Ki�1;Ki +

Kj ; : : : ;Kj�1; 0;Kj+1; : : : ;Kn) �W (Ki +Kj ; 0;K�ij) while welfare in the event that it blocks

it is W (K)� bij : The authority chooses the maximum of the two, approving the merger if and

only if

bij � �
�
W (Ki +Kj ; 0;K�ij)�W (K)

�
� ��ijW (K) :

This results in a state-dependent, history-independent threshold bbij(K) that bij must ex-
ceed for the antitrust authority to approve merger Mij in state K:bbij(K) = ��ijW (K) (11)

We call this a Markov perfect merger policy because in each period the antitrust authority

maximizes anew.

Recall that the blocking cost bij is a random variable with distribution H whose realization

is private to the antitrust authority. The �rms only know bbij(K) and H: Given the authority�s
decision rule, this means that in each state K �rms know that the probability of merger Mij

being approved is

aij (K) = 1�H(bbij(K)): (12)

If the merger bargaining strategies f�i(�)gi2I constitute a subgame perfect equilibrium
of the bargaining protocol given the interim values

�
V i(�)

	
i2I , the �rms� investment poli-

cies f�i(�)gi2I , the �rms� ex ante value functions fVi(�)gi2I ; and the �rms� interim values�
V i (�)

	
i2I satisfy equations (3), (5), and (7) for all states K 2 Sn, and the merger approval

policy a (�) satis�es (12) for all states K, then the collection
�
�; �; V; V

	
and a are respec-

tively a Markov perfect equilibrium for the industry and a Markov perfect policy for the

�no-commitment�antitrust authority.

Consumer surplus, producer surplus, and aggregate surplus. For the several

de�nitions of welfare and cost measures that follow we restrict the analysis to the n = 2 case

because, as with the state transition matrix and the industry steady state distribution, the

formulas for the general case with n > 2 are complicated and contribute little insight.

If the ex ante state is K 2 S2 and no merger occurs, then the consumer surplus realized is
CS (K), where

CS (K) �
Z 1

P (Q(K))
D(s)ds;

where D(�) is the industry demand function, P (�) � D�1(�) is the inverse demand function,
and Q(K) is the total quantity in the Cournot equlibrium at state K. If merger M12 occurs

8



in the period, then the consumer surplus realized is CS (K1 +K2; 0). The expected consumer

surplus at the ex ante state K is therefore

ECS(K) = [1� a12(K) 12(K)]CS (K) + a12(K) 12(K)CS(K1 +K2; 0)

where a12(K) 12(K) is the probability merger M12 occurs. Similarly, expected producer sur-

plus at ex ante state K 2 S2 is

EPS(K) = [1� a12(K) 12(K)]PS (K) + a12(K) 12(K)PS (K1 +K2; 0)

where PS (K) = �(K1;K2) + �(K2;K1). Aggregate surplus is the sum of consumer surplus

and producer surplus: AS (K) = CS (K)+PS (K). Consequently, in ex ante stateK expected

aggregate surplus is EAS (K) = ECS (K) + EPS (K).
Consumer value and aggregate value. We generalize these static criteria to their

dynamic analogues, CV and AV , whose values are the ENPVs of consumer welfare and of

aggregate welfare respectively. Aggregate welfare accounts not only for consumer and producer

surplus at the Cournot competition stage, but also for investment costs, merger proposal costs,

and blocking costs.

Ex ante consumer value, CV (K) ; is the ENPV of current and future expected consumer

surplus. Its Bellman equation is

CV (K) = ECS(K) + �
X
K0
12S

X
K0
22S

T
�
K;K0�CV (K0):

Interim consumer value is, for all states K,

CV (K) = CS (K) + �
X
K0
12S

X
K0
22S

�(K 0
1jK1;K2; �)�(K

0
2jK2;K1; �)CV (K

0)

because consumer surplus is realized at the Cournot competition stage after any proposed

merger has been consummated.

Ex ante aggregate value AV (K) has four components: consumer value CV (K), the sum

of the incumbent �rms�ex ante values V1 (K) + V2 (K), the ENPV of all future entrants�cash

�ows EEV (K), and the ENPV of the antitrust authority�s blocking costs EBC (K). Note that
the sum V1 (K) + V2 (K) fully accounts for the incumbents�expected merger proposal costs

and expected capital investment costs. But neither CV (K) nor V1 (K) + V2 (K) includes the

last two components, EEV (K) and EBC (K) : We discuss each in turn.
Consider the ENPV of future entrants�cash �ows, EEV (K). A new �rm 1 (with probability

0.5 it could be �rm 2 instead) comes into existence at the entry stage of each period in which

a merger occurs. This new �rm�s interim value is V 1(0;K1+K2) where K1+K2 is the merged

�rm�s capital level. In the ex ante state K = (K1;K2) the Bellman equation of the ex ante

ENPV of all future entrants�cash �ows is

EEV (K) = a12(K) 12(K)V 1 (0;K1 +K2) + �
X
K0
12S

X
K0
22S

T
�
K;K0� EEV (K0):
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In interim state K, the ENPV is

EEV (K) = �
X
K0
12S

X
K0
22S

�(K 0
1jK1;K2)�(K

0
2jK2;K1)EEV (K0):

Next consider the ENPV of the antitrust authority�s blocking costs, EBC (K) : This de-
pends on whether the authority commits or not. The �rst case is for a commitment authority

that selects a policy a12 (�) that, in each ex ante state K, speci�es either �approve�or �block�
with certainty, i.e., a12 (K) 2 f0; 1g : Given this commitment, each �rm knows that expending

resources proposing a merger when a12 (K) = 0 is hopeless because the authority will block

with probability 1. Consequently the authority never has to block a proposal, incurs zero

blocking costs, and EBC (K) = 0 for all K 2 S2.
For the second, no-commitment case, as explained above, in each ex ante state K the

authority sets a threshold bb12 (K) such that it blocks a proposed merger if and only if the
realization of its private, randomly distributed blocking cost b is less than bb12 (K) : Conditional
on a merger being proposed, the expected blocking cost in state K is

E [bjK] =
Z bb12(K)
b

b dH(b):

where H is b�s distribution function that has support
�
b;�b
�
. The Bellman equation for the ex

ante ENPV of blocking costs in ex ante state K is8

EBC(K) =  (K)E [bjK] + �
X
K0
12S

X
K0
22S

T
�
K;K0� EBC(K0):

In interim state K its value is

EBC(K) = �
X
K0
12S

X
K0
22S

�(K 0
1jK1;K2)�(K

0
2jK2;K1)EBC(K0):

Given these de�nitions, ex ante aggregate value in ex ante state K is

AV (K) = CV (K) + V (K1;K2) + V (K2;K1) + EEV (K)� EBC(K) (13)

and interim aggregate value in interim state K is

AV (K) = CV (K) + V (K1;K2) + V (K2;K1) + EEV (K)� EBC(K) (14)

with the caveat that EBC(K) = EBC(K) = 0 if the antitrust authority employs a commitment
merger policy.

8When n > 2 the expected blocking costs in state K is the expectation over expected blocking costs for each

possible merger given the various mergers�proposal probabilities.
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Steady State Welfare. Given ex ante welfare function W (�) the steady state, ex ante
average welfare the antitrust authority achieves under policy a (�) is

WSS =
X
K0
12S

X
K0
22S

�P
�
K0�W �

K0�
where, as de�ned in equation (9), �P (K0) is the industry�s steady state probability of being in

state K0:

1.2 Details regarding Calculation of Merger Outcomes for the n = 2 and
n = 3 Cases

This section presents the details of the merger negotation calculations for two cases: duopoly

industry statesK in which two �rms have capital stocks that are non-zero and triopoly industry

states K in which three �rms have non-zero capital stocks.

Merger proposals: duopoly industry states. Ex ante state K is a duopoly state if

and only if two �rms have capital stocks of at least one unit. Sections 2 speci�es that Nash

bargaining determines the outcome of merger negotiations in duopoly states: For ij 2 J , recall
that

�ij(K) � V (Ki +Kj ; 0)� [V (Ki;K�i) + V (Kj ;K�j)];

is the joint gain from merger Mij gross of the proposal cost �ij , and that

Sij(K; �ij) � aij(K)�ij(K)� �ij
denotes the expected bilateral surplus of �rms i and j from merging, conditional on the proposal

cost realization �ij , and that S
+
ij (K; �ij) � max

�
0; Sij(K; �ij)

�
. The �rms propose their

merger only if this surplus is positive, i.e., S+ij (K; �ij) > 0. Proposal costs �ij are distributed

indepedently with distribution function � (�) : Consequently, the ex ante probability of merger
Mij being proposed in ex ante state K is

 ij(K) � �(aij(K)�ij(K)) (15)

and the ex ante probability of a merger occurring is #ij(K) � aij(K) ij(K). Nash bargaining

over the gains from merging implies that �rm i�s ex ante value is

V (Ki;K�i) = V (Ki;K�i) +
1

2
 ij(K)

�
aij(K)�ij(K)� E

�
�ij jK

�	
(16)

where the interim value V (Ki;K�i) is �rm i�s disagreement value, the term in curly brackets

is the merging �rms�expected net gain from proposing a merger (which they divide equally),

and

E
�
�ij jK

�
�

R a(K)�ij(K)
� �d�(�)

 ij(K)

11



is the expected proposal cost conditional on the merger being proposed. Equation (16) gives a

formula for V (Ki;K�i) in terms of V (Ki;K�i) and �ij (K) where �ij (K) itself is a function

of interim values. Consequently equation (16) together with equation (5) for V (Ki;K�i)

implicitly de�ne the Bellman equation for the ex ante value V (Ki;K�i).

Merger proposals: triopoly industry states. Ex ante state K is a triopoly state if

three �rms have positive capital stocks. Paralleling the discussion of mergers in a duopoly

state, to characterize mergers in triopoly states we must derive merger proposal probabilities

 ij (K) and write a formula for each �rm�s ex ante value V (Ki;K�i).

Under the static Burguet and Caminal bargaining protocol that guides our analysis in

triopoly states �rm i is chosen to be the proposer with probability 1/3 and proposal costs�
�ij ; �ik; �jk

�
are independently drawn from the cumulative distribution function � whose

support is [�; �]: Let the joint density of the costs be �3
�
�ij ; �ik; �jk

�
on the domain � =

[�; �]3:

Proposition 1 implicitly partitions� into �ve regions that determine what merger proposals

are made, if any, in state K: Let ~� =
�
~�ij ;

~�ik;
~�jk

�
be the realization of the proposal costs.

De�ne the function �i
�
~�;K

�
that outputs the merger, if any, that is proposed to the antitrust

authority given the realized proposal costs ~� and the ex ante state K:

�i

�
~�;K

�
�

8>>>>>><>>>>>>:

Mjk if S+jk(K;
~�jk) > maxfSij(K; ; ~�ij); Sik(K; ~�ik)g

Mij if S+ij (K; ~�ij) > S+ik(K;
~�ik) � S+jk(K;

~�jk)

Mij if S+ij (K; ~�ij) > S+jk(K;
~�jk) > S+ik(K;

~�ik) & S+ij (K;
~�ij)=2 > Xjk

i (K)

Mjk if S+ij (K; ~�ij) > S+jk(K;
~�jk) > S+ik(K;

~�ik) & S+ij (K;
~�ij)=2 < Xjk

i (K)

M? if S+ij (K; ~�ij) = S+ik(K;
~�ik) = S+jk(K;

~�jk) = 0

:

where M? represent no merger proposed.

On the domain fMij ;Mik;Mjk;M?g ���S3 de�ne the indicator function �i(�; ~�;Kj�i)
to have value 1 if �i

�
~�;K

�
= � and 0 otherwise. Conditional on �rm i being the randomly

selected proposer, the probability that merger M� 2 (Mij ;Mij ;Mjk;M?) will be proposed is

 i� (K) =

Z
�
�i(�; ~�;Kj�i)�3(~�)d~�:

where, for example, if � = Mij we write  iij (K) rather than  iMij
(K) ; etc. The ex ante

probability of merger M� 2 (Mij ;Mik;Mjk;M?) occuring in ex ante state K is then

 � =
1

3

P3
i=1  

i
� (K) : (17)

where the 1
3 coe¢ cient is the probability each �rm has of being selected proposer. Proposal

costs are incurred whenever a merger is proposed. Therefore, conditional on �rm i being the

random proposer, expected proposal costs of mergers in which i is involved, are

E i [�jK] =

8<: 0 if � =M?P
�2fMij ;Mikg

R
� �i(�;

~�;Kj�i)~���3(~�)d~� otherwise
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where if � = Mij we write ~�ij ; etc. Ex ante, total expected proposal costs across all three

�rms are

E [�jK] = 1

2

X
�2fMij ;Mik;Mjkg

Z
�
�i(�; ~�;Kj�i)~���3(~�)d~�

where the 1
2 coe¢ cent corrects for double counting.

The expected externality that �rm i 6= k; j realizes if merger Mjk occurs is

Xjk
i (K) � ajk(K)

�
V i(Ki;Kj +Kk; 0)� Vi(Ki;K�i)

�
:

The ex ante value of �rm i in ex ante state K is therefore

V (Ki;K�i) = V (Ki;K�i)+
1

2

8<:�E [�jK] + X
�2fMij ;Mikg

 �(K)a�(K)��(K)

9=;+ jk(K)Xjk
i (K)

(18)

where V (Ki;K�i) is �rm i�s disagreement value, the second term is the expected merger gains

net of expected proposal costs that �rm i shares with its merger partners, and the last term is

the expectation of the externality �rm i realizes if merger Mjk occurs. Equation (16) gives a

formula for V (Ki;K�i) in terms of V (Ki;K�i) and �ij (K) where �ij (K) itself is a function

of interim values. Consequently equation (16) together with equation (5) for V (Ki;K�i)

implicitly de�ne the Bellman equation for the ex ante value V (Ki;K�i).

1.3 Proof of Proposition 1

We begin with the following lemma.

Lemma 1 Suppose �rm i is selected as the proposer in state K. Further, suppose that �rm i

invites �rm j to enter merger negotiations. Then:

(i) If S+ij (K; �ij) > S+jk(K; �jk), �rm j accepts the invitation and merger Mij gets proposed.

(ii) If S+ij (K; �ij) < S+jk(K; �jk), �rm j declines the invitation and merger Mjk gets proposed.

(iii) If S+ij (K; �ij) = S+jk(K; �jk) = 0, no merger gets proposed.

Proof. If �rm j accepts �rm i�s invitation, its expected continuation value is

V (Kj ;K�j) +
1

2
S+ij (K; �ij):

If �rm j instead declines the invitation, it enters merger negotiations with �rm k, resulting in

an expected continuation value of

V (Kj ;K�j) +
1

2
S+jk(K; �jk):

13



Hence, �rm j strictly prefers accepting the invitation if S+ij (K; �ij) > S+jk(K; �jk), and strictly

prefers declining it if the inequality is reversed. If S+ij (K; �ij) = S+jk(K; �jk) = 0, no matter

whether �rms i and j or j and k enter into merger negotiations, no merger gets proposed as,

generically, both Sij(K; �ij) < 0 and Sjk(K; �jk) < 0 in that case.

Proof of Proposition 1.
Part (i). Suppose S+jk(K; �jk) > maxfS

+
ij (K; �ij); S

+
ik(K; �ik)g. Lemma 1 implies that, no

matter whether �rm i invites �rm j or �rm k, that invitation gets declined, and merger Mjk

gets proposed.

Part (ii). Suppose S+ij (K; �ij) > S+ik(K; �ik) � S+jk(K; �jk). Lemma 1 implies that if

�rm i chooses to invite �rm j, then merger Mij gets proposed, yielding �rm i an expected

continuation value of

V (Ki;K�i) +
1

2
S+ij (K; �ij):

If �rm i chooses to invite �rm k and S+ik(K; �ik) > S+jk(K; �jk), then by the Lemma merger

Mik gets proposed, yielding �rm i an expected continuation value of

V (Ki;K�i) +
1

2
S+ik(K; �ik) < V (Ki;K�i) +

1

2
S+ij (K; �ij):

If �rm i chooses to invite �rm k and S+ik(K; �ik) = S+jk(K; �jk) = 0 (the case S+ik(K; �ik) =

S+jk(K; �jk) > 0 generically does not occur), then by Lemma 1 no merger gets proposed,

yielding �rm i an expected continuation value of

V (Ki;K�i) < V (Ki;K�i) +
1

2
S+ij (K; �ij):

Hence, �rm i invites �rm j and merger Mij gets proposed.

Parts (iii) and (iv). Suppose S+ij (K; �ij) > S+jk(K; �jk) > S+ik(K; �ik). From Lemma 1, if

�rm i chooses to invite �rm j, then merger Mij gets proposed, yielding �rm i an expected

continuation value of

V (Ki;K�i) +
1

2
S+ij (K; �ij):

Similarly, if �rm i chooses to invite �rm k, then merger Mjk gets proposed, yielding �rm i an

expected continuation value of

V (Ki;K�i) + IfS+jk(K;�jk)>0g
Xjk
i (K) = V (Ki;K�i) +X

jk
i (K);

where the equality follows from the fact that, by assumption, S+jk(K; �jk) > 0, implying that

mergerMjk would get proposed if �rm i were to invite �rm k (as �rm k would reject and invite

�rm j with whom �rm k has a larger and positive surplus). Hence, if S+ij (K; �ij)=2 > Xjk
i (K),

then �rm i invites �rm j and mergerMij gets proposed; if the inequality is reversed, then �rm

i invites �rm k and merger Mjk gets proposed.

Part (v) is immediate.
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1.4 Computation

The algorithm that we use numerically to solve for equilibria is a version of the well-known

Pakes-McGuire (1994) algorithm. It is a straightforward iterative process. For a given merger

policy a (�) the procedure works as follows. Pick an initial guess for the investment function
�(0) and the ex ante value function V (0). Then compute an updated estimate of the investment

policy function �(1) using equation (3). As this is a di¢ cult integral to evaluate, we use Monte

Carlo integration at each state K. Speci�cally, for a given vector ~c of random cost draws, the

ex ante value function V (0), and the rival�s investment policy function �(0) [which determines

the rival�s transition probabilities via equation (2)], we calculate �rm i�s optimal investment

decision ki for that instance of ~c. Repeating this with many cost draws we use the proportion

of cost draws for which ki is optimal as our estimate of �(1)
�
kijK1;K2; V

(0)
�
.

We then use equation (5) to calculate the interim value function V
(1)
. Using this interim

value function and merger policy a (�), we compute the merger proposal function  (1) using
equation (15). Finally we calculate an updated ex ante value function V (1) using equation

(16).

Computation of the Markov perfect policy involves an additional step where we update

the antitrust authority�s merger policy a(1) (�) using equation (12). We calculate W based on

the authority�s objective function and the state transitions induced by the �rms�investment

policy function �(1), merger proposal function  (1), and the authority�s intitial merger policy

a(0) (�).
We iterate this process using the updated investment function �(1) and the updated ex

ante value function V (1) as our starting point. We continue this iterative procedure untilV (`+1) � V (`) � " for some small " > 0.9

Computation for the model with three �rms is analogous except for updating the merger

proposal function  . Because the solution to the bargaining process involves integrals which

are di¢ cult to evaluate, we use Monte Carlo integration, simulating proposal costs and the

selection of the intitial proposer.

A copy of the MatLab code and a document that describes the code and this algorithm in

more detail is available online.

2 Merger Policy in the Small and Large Markets
9The distance metric we use combines absolute di¤erences and percentage di¤erences. For values less than

one we use absolute di¤erences, while for values greater than one we use percentage di¤erences. This is because,

for an " = 0:0001, we want a value of 0:001 and 0:0009 to be considered the same even though they have a

percentage di¤erence of 0:1 and we want a value of 1000 and 1000:1 to be considered the same even though

they have an absolute di¤erence of 0:1.
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Figure 1: Static change in aggregate surplus for (a) the small market and (b) the large market.

Negative numbers are in parentheses.

In this section, we describe our results for the optimal merger policy in the small (A =

3; B = 22) and large (A = 3; B = 30) markets, and compare them to our results for the

intermediate (A = 3; B = 26) market found in the main paper. The static welfare e¤ects of

mergers are very similar in the three markets: in all of them only a merger in state (1; 1)

increases static consumer surplus, and in all of them, a merger in state (K1;K2) increases

static aggregate surplus unless both K1 and K2 are �large,�with the set of statically aggregate

surplus-increasing mergers being larger in larger markets. Figure 1 shows the set of aggregate

surplus-increasing mergers in the small and large markets.

Figures 2 through 7 show the steady state distributions and �ve-period transitions for

the small, intermediate and large markets when no mergers are allowed. When the antitrust

authority pursues instead an AV goal and cannot commit, the Markov perfect merger policy

results in mergers only in near-monopoly states in which the incumbent is su¢ ciently large.

The larger the market, the more restrictive is the antitrust authority in equilibrium. Figures 8

and 10 show the steady state distribution and probabilities that a merger happens in the small

and large markets, while Tables 1 and 2 provide some summary statistics of these equilibria.

The average merger probability is 30.6% in the small market, but only 3.0% in the large market

(versus 16.1% in the intermediate market). In the small market the industry is almost always

(98.6% of the time) in a monopoly state at the Cournot competition stage, compared to 49.4%

in the intermediate market, and only 8.2% in the large market. The equilibria involve larger
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Figure 2: Beginning-of-period steady state distribution of the equilibrium generated with no

mergers in the small market. The height of each pin indicates the steady state probability of

that state.

capital levels as the market size grows.

Driving these di¤erences are the larger returns from capital additions that increased market

size provides. Figures 5 through 7 illustrate the strength of this e¤ect in the no-mergers-

allowed equilibria as the market size increases. In these �gures each arrow represents the

average movement over �ve periods starting in each state. The almost non-existent movement

toward duopoly from state (5; 0) in the small market evident in Figure 5, changes to robust

movement towards duopoly from state (5; 0) in the large market in Figure 7. Entry, without

the carrot of entry for buyout, is much more attractive and thefore a more e¤ective check on

monopoly in large markets. The antitrust authority therefore has an incentive to be more

aggressive in blocking mergers.

As in the intermediate market, if the antitrust authority pursues a CV goal and cannot

commit, the Markov perfect merger policies in the small and large markets are essentially

equivalent to the no-mergers policy.10 The same is true if it adopts the static consumer surplus-

based policy. In contrast, pursuing the static aggregate surplus-based policy is essentially

equivalent in outcome to allowing all mergers.

10 In the large market, the authority would approve mergers in states (1; 1), (2; 1), and (1; 2) but such mergers

are not value-enhancing for the �rms and therefore never proposed.
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Figure 3: Beginning-of-period steady state distribution of the equilibrium generated with

no mergers in the intermediate market. The height of each pin indicates the steady state

probability of that state.
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Figure 4: Beginning-of-period steady state distribution of the equilibrium generated with no

mergers in the large market. The height of each pin indicates the steady state probability of

that state.
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Figure 5: Arrows show the expected transitions over 5 periods in the small market with no

mergers allowed.
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Figure 6: Arrows show the expected transitions over 5 periods in the intermediate market with

no mergers allowed.
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Figure 7: Arrows show the expected transitions over 5 periods in the large market with no

mergers allowed.
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Figure 8: Beginning-of-period steady state distribution of the equilibrium generated by the

Markov perfect policy (AV criterion) in the small market. The height of each pin indicates

the steady state probability of that state. The shading of the cell re�ects the probability of a

merger happening (with a darker grey representing a higher probability).
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Figure 9: Beginning-of-period steady state distribution of the equilibrium generated by the

Markov perfect policy (AV criterion) in the intermediate market. The height of each pin indi-

cates the steady state probability of that state. The shading of the cell re�ects the probability

of a merger happening (with a darker grey representing a higher probability).

Table 1: Performance Measures for the Small Market under Various Policies

Performance Measure11
No-Mergers/

MPP-CV

Static-

AS

All-

Mergers

MPP-

AV

Comm.-

AV

Comm.-

CV

Avg. Consumer Value 31.8 28.8 28.8 29.1 32.9 33.2

Avg. Incumbent Value 57.8 56.6 56.3 58.0 61.0 57.8

Avg. Entrant Value 0.0 1.1 1.1 0.8 0.0 0.1

Avg. Blocking Cost 0.0 0.0 0.0 0.0 0.0 0.0

Avg. Aggregate Value 89.6 86.5 86.2 87.9 94.0 91.1

Avg. Price 2.25 2.28 2.28 2.28 2.23 2.23

Avg. Quantity 16.5 15.8 15.8 15.9 16.9 16.9

Avg. Total Capital 5.8 5.9 5.9 6.0 6.6 6.2

Merger Frequency 0.0% 33.2% 33.9% 30.6% 6.8% 11.6%

% in Monopoly 58.2% 95.7% 95.2% 98.6% 68.6% 60.8%

% minfK1;K2g � 2 35.9% 0.1% 0.1% 0.3% 17.4% 32.3%

State (0,0) CV 24.0 18.9 18.8 19.4 21.8 24.1

State (0,0) AV 28.4 26.3 26.3 26.8 27.7 28.3

11All values are ex ante (beginning-of-period) values except % in Monopoly and % minfK1;K2g � 2 which

are at the Cournot competition stage. �Static-CS�amd �Static-AS�refer, respectively, to the equilibria under

the optimal static consumer surplus-based and aggregate surplus-based merger policies. �MPP-CV�and �MPP-

AV� refer, respectively, to the equilibria when the antitrust authority cannot commit (resulting in a Markov
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Figure 10: Beginning-of-period steady state distribution of the equilibrium generated by the

Markov perfect policy (AV criterion) in the large market. The height of each pin indicates

the steady state probability of that state. The shading of the cell re�ects the probability of a

merger happening (with a darker grey representing a higher probability).

Table 2: Performance Measures for the Large Market under Various Policies

Performance Measure12
No-Mergers/

MPP-CV

Static-

AS

All-

Mergers

MPP-

AV

Comm.-

AV

Comm.-

CV

Avg. Consumer Value 61.3 44.2 44.1 60.1 61.4 61.4

Avg. Incumbent Value 81.0 81.2 80.8 81.1 81.1 80.8

Avg. Entrant Value 0.0 2.2 2.2 0.1 0.0 0.0

Avg. Blocking Cost 0.0 0.0 0.0 0.0 0.0 0.0

Avg. Aggregate Value 142.3 127.7 127.2 141.3 142.5 142.3

Avg. Price 2.10 2.23 2.24 2.11 2.10 2.10

Avg. Quantity 27.0 23.0 22.9 26.7 27.0 27.0

Avg. Total Capital 9.6 8.3 8.3 9.5 9.6 9.6

Merger Frequency 0.0% 34.3% 33.6% 3.0% 0.0% 0.1%

% in Monopoly 2.3% 70.4% 68.4% 8.2% 2.3% 1.1%

% minfK1;K2g � 2 94.4% 3.6% 3.8% 87.9% 94.5% 95.5%

State (0,0) CV 36.4 30.0 29.9 35.5 36.5 36.4

State (0,0) AV 45.6 42.4 42.3 45.2 45.6 45.6

perfect policy) under consumer value and aggregate value welfare criteria. �Comm.-CV� and �Comm.-AV�

refer, respectively, to the equilibria when the antitrust authority commits to the optimal merger policy (within

the class described in Section 3 of this Online Appendix) for maximizing consumer value and aggregate value..
12All values are ex ante (beginning-of-period) values except % in Monopoly and % minfK1;K2g � 2 which
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3 Commitment Policy

In our analysis in the main text we assumed that the antitrust authority, like each of the �rms,

acts as a player in a stochastic dynamic game, being unable to commit to its future policy. To

provide a benchmark for comparison, and also because it is of independent interest, we now

consider the optimal commitment policy, a state-dependent merger approval rule to which the

authority pre-commits before the game starts. For simplicity, we focus on the case n = 2.

We assume that the antitrust authority seeks to maximize the steady state level of expected

welfare, either CV or AV depending on the welfare criterion.13 In contrast to the Markov

perfect policy, the planner in the commitment case considers the impact his policy has on

�rms�strategies and, in particular, considers how �rms�investment behavior is a¤ected by the

prospects of future merger approvals.14 In our discussion, we will focus on the intermediate

market; the results for the small and large markets are summarized toward the end of the

section.

3.1 Feasible Policies

Formally, we assume that the antitrust authority pre-commits to a pure action aij(K) 2 f0; 1g
for each state K where aij(K) = 1 if the merger is approved and 0 if it is blocked. Observe

that there are 2100 possible deterministic symmetric merger policies. Thus, for computational

reasons, we restrict the space of admissible commitment policies to two classes.15

Her�ndahl-based policy. Under this type of policy, a proposed merger in state K is ap-

proved if and only if the induced change in the capital stock-based Her�ndahl index is below

a threshold �H:

�H(K) � H([K1 +K2; 0])�H(K) � �H

where H(K) is the capital stock-based Her�ndahl index in state K and �H is the authority�s

are at the Cournot competition stage. �Static-CS�amd �Static-AS�refer, respectively, to the equilibria under

the optimal static consumer surplus-based and aggregate surplus-based merger policies. �MPP-CV�and �MPP-

AV� refer, respectively, to the equilibria when the antitrust authority cannot commit (resulting in a Markov

perfect policy) under consumer value and aggregate value welfare criteria. �Comm.-CV� and �Comm.-AV�

refer, respectively, to the equilibria when the antitrust authority commits to the optimal merger policy (within

the class described in Section 3 of this Online Appendix) for maximizing consumer value and aggregate value.
13This policy will generally di¤er from the policy that would be optimal given that the industry is starting

in a particular state (K1;K2). In addition to our primary analysis focusing on steady state welfare, we also

consider the commitment policy that maximizes the expected welfare of a �new� industry at state (0,0); see

footnote 19.
14A second di¤erence is that under commitment the antitrust authority considers the impact its policy has

on proposal costs, while without commitment those costs are considered to be sunk at the time a merger is

reviewed. [A similar point arises in Besanko and Spulber (1992).]
15The particular form these simple commitment policies take is partly motivated by which mergers are AV-

increasing as one-shot deviations. Note that to limit the number of feasible policies, we do not consider random

approval rules.
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policy variable.16 ;17 For illustration, Figure 11(a) shows the policy �H = 0:35 where states

with aij(K) = 1 are shaded (only states with maxfK1;K2g � 10 are shown), while Figure

11(b) shows the policy �H = 0:2.

1. Capital-stock-based policy Under this type of policy, a proposed merger in state K is

approved if and only if K1 + K2 =2 (K;K) and minfK1;K2g � Ki where K, K,

and Ki are the authority�s policy variables.
18 Figure 11(c), for example depicts the

policy (K;K;Ki) = (4; 10; 1) where states with aij(K) = 1 are shaded (only states

with maxfK1;K2g � 10 are shown), while Figure 11(d) shows the policy (K;K;Ki) =

(10; 21; 1).

As observed earlier, under a commitment policy the antitrust authority never incurs any

blocking costs since if it commits to block a merger in state K the merger will not be proposed

in the �rst place.

3.2 Optimal Commitment Policy

In the intermediate market, the optimal commitment policy � for either a CV or AV standard

� is the Her�ndahl-type policy �H = 0:225. For states in which each �rm has no more

than 10 units of capital, this policy involves approving a merger only when the smaller �rm

has one unit of capital and the larger �rm has at least seven units. Wherever a merger is

approved under this policy, it is also highly pro�table to the merging �rms and is proposed

with probability one. With mergers occurring only 3% of the time, this policy is fairly close

to the no-mergers-allowed policy.

Figure 12 shows the steady state distribution of the equilibrium induced by the optimal

commitment policy. Table 6 shows steady state averages of various performance measures for

this policy. The ability to commit leads to a 4% gain in AV compared to the Markov perfect

policy with the AV criterion, and a 2.5% gain in CV compared to the Markov perfect policy

with the CV criterion.19

16To retain computational tractability we discretize the policy space: �H 2 f0:075; 0:075 + �; 0:075 +

2�; :::; 0:4��; 0:4g, where � = 0:025.
17Because there are only two �rms, the post-merger Her�ndahl indices always equal one: H(K1 +K2; 0) =

H(0;K1 + K2) = 1, so �H(K1;K2) = 1 � H(K1;K2). Therefore a merger is approved if and only if

H(K1;K2) � 1��H. Thus, under the Her�ndahl-based policy mergers are only approved if the beginning-of-
period Her�ndahl is su¢ ciently high.
18To retain computational tractability we discretize the policy space: K 2 f2; 4; :::; 10; 12g, K 2

f6; 8; :::; 18; 20g and Ki 2 f1; 2; :::; 6; 7g.
19We also consider the optimal commitment policy for a new industry, which maximizes the welfare level (CV

or AV) at state (0,0). In searching for this policy, we identify �rst the state (0,0) welfare-maximizing policy

in the class of Her�ndahl-based or capital-stock-based commitment policies, and then allow the authority to

optimize fully for the states fKj0 � Ki � 4, i = 1; 2g. The rationale for the second step is that merger policy
at states with small capital levels is likely to be particularly important for maximizing welfare starting in state

(0; 0).
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Figure 11: Panels (a) and (b) show Her�ndahl-based commitment policies, whereas panels (c)

and (d) show capital-stock-based commitment policies. (a) is �H = 0:35, (b) is �H = 0:2,

(c) is (K;K;Ki) = (4; 10; 1), (d) is (K;K;Ki) = (10; 21; 1). The shaded states are those in

which aij(K) = 1.
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Figure 12: Beginning-of-period steady state distribution of the equilibrium generated by the

optimal commitment policy (AV and CV criteria) in the intermediate market. The height

of each pin indicates the steady state probability of that state. Cells in which mergers are

proposed and approved are darkly shaded.
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Figure 13: Five-period transitions from state (5,0) under the optimal commitment policy. The

height of each pin indicates the probability of the industry being in that state. Cells in which

mergers are proposed and approved are darkly shaded.

Strikingly, even though mergers move the industry to a monopoly state, the industry

spends less time in a monopoly state (at the Cournot competition stage) with the optimal

commitment policy than under the no-mergers-allowed policy (14.3% vs. 18.6%), and capital

levels are higher (8.2 vs. 8.0). As can be seen in Figures 13 and 14, the reason there is

less monopoly is that the prospect of merger induces entrants to invest, but the limited set

of states in which mergers are allowed results in the industry often moving to symmetric

duopoly positions following these investments. Indeed, the probability that the industry is in

a monopoly state after �ve periods starting from state (5; 0) is much lower than under the

no-mergers policy: 0.45 vs. 0.84. The greater movement to symmetric, duopolistic states

from monopoly ones can also be seen by comparing Figure 15 to Figure 6.

While full commitment to a policy may be di¢ cult to achieve, an alternative is to endow

the antitrust authority with an objective that may not be the true social objective. In this

regard, note that the steady state level of AV under the Markov perfect merger policy when

the antitrust authority has a CV objective (essentially the no-mergers-allowed outcome) is

The optimal commitment policy starting from state (0,0) allows mergers in very few states. For the AV

objective, the authority allows mergers only in states K such that Ki 2 f1; 2g, i = 1; 2. However, as a merger
in state (1; 1) is never [and in states (1; 2) and (2; 1) only rarely] pro�table, this is almost equivalent to allowing

mergers only in state (2; 2). The resulting AV (resp. CV) level is 37.1 (26.6), whereas under the no-mergers

policy it is 36.7 (30.3). For the CV objective, the state (0,0) optimal commitment policy is a no-mergers policy.
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Figure 14: Five-period transitions from state (5,0) under the no-mergers-allowed policy. The

height of each pin indicates the probability of the industry being in that state.
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Figure 15: Arrows show the expected transitions over 5 periods under the optimal commitment

policy.
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Figure 16: Beginning-of-period steady state distribution of the equilibrium generated by the

best commitment policy (CV criterion) in the small market. The height of each pin indicates

the steady state probability of that state. The shading of the cell re�ects the probability of a

merger happening (with a darker grey representing a higher probability).

higher than that when it has an AV objective. Thus, when the antitrust authority cannot

commit, a CV-maximizing antitrust authority is better for AV in this market than an AV-

maximizing authority. This is consistent with a suggestion of Lyons (2002), but arises because

of the policy�s e¤ect on investment, rather than by inducing a socially more desirable choice

of merger partner as in Lyons (2002).

3.3 Commitment Policy in the Small and Large Markets

We now brie�y summarize our results for the optimal commitment policy in the small (A =

3; B = 22) and large (A = 3; B = 30) markets, and compare them to our results for the

intermediate (A = 3; B = 26) market.

If the antitrust authority pursues a CV goal, then the optimal commitment policy in all

three markets involves approving mergers only in near-monopoly states in which the incumbent

is su¢ ciently large. This policy is more restrictive the larger is the market, with the merger

probabilities ranging from 0.1% in the large market to 11.6% in the small market (see Tables

1 and 2). Figures 16 and 17 show the steady state distributions and optimal merger policy

for the small and large markets.

If the antitrust authority pursues an AV goal instead, its optimal commitment policy is
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Figure 17: Beginning-of-period steady state distribution of the equilibrium generated by the

best commitment policy (CV criterion) in the large market. The height of each pin indicates

the steady state probability of that state. The shading of the cell re�ects the probability of a

merger happening (with a darker grey representing a higher probability).
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Figure 18: Beginning-of-period steady state distribution of the equilibrium generated by the

best commitment policy (AV criterion) in the small market. The height of each pin indicates

the steady state probability of that state. The shading of the cell re�ects the probability of a

merger happening (with a darker grey representing a higher probability).

essentially to approve no mergers in the large market. In the small market, however, it does

approve mergers in states in which both �rms are su¢ ciently large (resulting in a merger

probability of 6.8%), which boosts �rms� investment incentives (resulting in an almost 10%

higher capital level compared to the AV-maximizing Markov perfect policy). Figures 18 and 19

show the steady state distributions and optimal merger policies for the two markets. Observe

that the optimal commitment policy is more restrictive in larger markets even though the set

of states in which mergers increase static aggregate surplus is larger in larger markets.

Independently of whether the authority pursues a CV or AV objective, the advantage that

commitment has over no commitment is decreasing (both in absolute as well as in relative

terms) with the size of the market. For example, compared to the AV-maximizing Markov

perfect policy, the AV-maximizing commitment policy induces a steady state average AV that

is 6.7% higher in the small market but only 0.8% higher in the large market.

4 Extensions and Robustness

In this section, we investigate several extensions and robustness issues. Section 4.1 investigates

how changes in the ease of entry a¤ect the optimal merger policy. Section 4.2 examines the
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Figure 19: Beginning-of-period steady state distribution of the equilibrium generated by the

best commitment policy (AV criterion) in the large market. The height of each pin indicates

the steady state probability of that state. The shading of the cell re�ects the probability of a

merger happening (with a darker grey representing a higher probability).
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e¤ects of reducing the di¤erence in investment costs between incumbents and entrants. Section

4.3 considers the equilibrium when a planner controls investment and merger decisions. Section

4.4 considers a modi�cation to the model where the entrant is the previously bought-out �rm�s

owner. Section 4.5 examines changing bargaining power from an equal weighting to a capital-

weighted bargaining power. Section 4.6 looks at the robustness of our results for various

production scale parameters. Finally, Section 4.7 looks at the robustness of our results for

various ranges of investment costs. Throughout this section, we focus on the duopoly case

(n = 2).

4.1 Ease of Entry

It is generally perceived that the potential anticompetitive e¤ects of horizontal mergers are

mitigated when entry into the industry is easy. For instance, the current (2010) U.S. Horizontal

Merger Guidelines (which are largely based on a consumer welfare standard) state:

A merger is not likely to enhance market power if entry into the market is so easy

that the merged �rm and its remaining rivals in the market, either unilaterally

or collectively, could not pro�tably raise price or otherwise reduce competition

compared to the level that would prevail in the absence of the merger. Entry is

that easy if entry would be timely, likely, and su¢ cient in its magnitude, character,

and scope to deter or counteract the competitive e¤ects of concern.

To study how the ease of post-merger entry a¤ects optimal merger policy and the resulting

performance of the industry, we extend the baseline model in two ways: �rst by introducing a

probability e � 0 that a new entrant arrives at the entry stage whenever the current state of
the industry has a single active �rm, and second by introducing a minimum scale �Kg > 1 for

green�eld investment. We focus on the intermediate market and the AV criterion. Contrary

to the conventional view, we �nd that in both cases optimal merger policy may become more

permissive when entry becomes more di¢ cult.20

4.1.1 Timeliness of Entry

Consider, �rst, the timeliness of entry following a merger. Table 3 reports the performance

measures of the intermediate (A = 3; B = 26) market under the Markov perfect policy with an

AV welfare criterion for di¤erent levels of the entry probability e.21 Despite the ine¢ ciencies

20For a similar observation in a static context, see Whinston (2007). While new entry is generally viewed as

being price-reducing and thus bene�cial to consumers, it may be excessive from an aggregate welfare point of

view [Mankiw and Whinston (1986)].
21Formally, this requires extending the state space to S 0 � f�1; 0; 1; :::; 20g2, where Ki = �1 means that �rm

i is an entrant who has not yet arrived. The �rms�expected gain from merging is therefore now given by

�G(K1;K2) = eV (K1 +K2; 0) + (1� e)V (K1 +K2;�1)� [V (K1;K2) + V (K2;K1)];
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associated with entry for buyout, welfare declines as entry becomes less timely: the steady

state levels of CV and AV fall from 43.3 and 113.6, respectively, to 28.0 and 98.5 as e decreases

from 1 to 0. The reason for this �nding is that, as e decreases, the industry spends more and

more time in a monopoly state: the steady state probability of monopoly increases from 49.4%

at e = 1 to 100% at e = 0. This hurts consumers and society a lot in the short run (for a given

level of capital) but even more so in the long run because a monopolist has little incentive to

build capital in the absence of a threat of entry: the average total capital level decreases from

7.7 to 5.3 as e decreases from 1 to 0.

Table 3: Timeliness of Entry and Markov Perfect Policy Outcomes
(Intermediate Market, AV Criterion)

Performance Measure22 e=1.0 e=0.8 e=0.6 e=0.4 e=0.2 e=0.0

Avg. Consumer Value 43.3 41.6 37.4 33.1 30.6 28.0

Avg. Incumbent Value 69.9 70.3 70.7 69.6 69.7 70.5

Avg. Entrant Value 0.5 0.5 0.9 1.8 1.4 0.0

Avg. Blocking Cost -0.1 0.0 0.0 0.0 0.0 0.0

Avg. Aggregate Value 113.6 112.4 109.0 104.6 101.7 98.5

Avg. Price 2.19 2.21 2.25 2.29 2.32 2.35

Avg. Quantity 21.0 20.6 19.6 18.5 17.7 16.9

Avg. Total Capital 7.7 7.5 7.1 6.4 5.9 5.3

Merger Frequency 16.1% 19.5% 30.3% 36.7% 20.0% 0.0%

% in Monopoly 49.4% 58.9% 83.6% 99.4% 100% 100%

% minfK1;K2g � 2 44.2% 35.3% 13.1% 0.1% 0.0% 0.0%

Table 3 also reveals that the frequency of mergers is non-monotonic in the timeliness of

post-merger entry: as e decreases from our base case of e = 1, the probability that a merger

occurs in a randomly selected period �rst increases (from 16.1% at e = 1 to 36.7% at e = 0:4)

and then decreases. As a merger is infeasible in states in which there is only one active �rm,

this steady state weighted merger probability is equal to the probability that there are two

active �rms times the probability of a merger conditional on two �rms being active, and is

bounded from above by the entry probability e.23 This explains why the merger frequency

converges to zero as the entry probability e becomes small.

where the �rst (second) term on the right-hand side is the probability of new entry (no new entry) occurring

times the continuation value of the merged �rm in that event.
22All values are ex ante (beginning-of-period) values, while the performance measures in the last two rows

are at the Cournot competition stage.
23The steady state weighted merger probability is maximized when the probability of a merger, conditional

on there being two active �rms, is equal to one. In that case, the probability that there are two active �rms

is equal to the entry probability e, implying that the steady state weighted merger probability is equal to e as

well.
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To understand why the merger frequency increases as e decreases from 1 to 0.4, consider

the merger probability conditional on two �rms being active, which is the product of two

probabilities: the probability that the two active �rms propose a merger and the probability

that a proposed merger is approved.

Consider �rst states in which both �rms have at least one unit of capital. As e decreases,

mergers become more pro�table in such states as the merged �rm spends more time in a

monopoly state before a new entrant appears. Moreover, the AV-maximizing Markov perfect

policy tends to become less restrictive as e declines, re�ecting the reduced entry for buyout

behavior. When the entry probability e is high, the Markov perfect policy approves mergers

only in states in which at least one of the �rms is su¢ ciently small (as we have seen for e = 1

in Section 3.3 of the main paper). As e decreases, this approval region increases. For example,

a proposed merger in state (3,3) is never approved if e � 0:6 but always approved if e = 0:4.
Consider now states in which an entrant has arrived yet has no capital. When the entry

probability is one, the authority would always approve a proposed merger in such a state:

approving the merger has no e¤ect on AV, but blocking is costly. However, when e = 1, such a

merger would not be proposed as it is not pro�table.24 When the post-merger entry probability

is su¢ ciently small, such a merger becomes pro�table as the arrival of a new entrant following

a merger takes time, allowing the merging �rms to reap monopoly pro�ts in the meantime.

As e decreases, �rms are therefore more likely to propose mergers between an entrant and

an incumbent. At the same time, while the antitrust authority starts to block mergers, it

allows some proposed mergers. Hence, the probability of a merger between an entrant and an

incumbent becomes positive for e � 0:6.25

4.1.2 Minimum Scale for Green�eld Investment

We now explore a di¤erent way in which entry may become more di¢ cult. Speci�cally,

we extend the model by introducing a minimum size for green�eld investment, �Kg, focusing

again on the intermediate market. As incumbents rarely use the green�eld technology, this

essentially amounts to introducing a minimum scale of entry.

Table 4 shows the same performance statistics for �Kg ranging from 1 (our base case) to 5.

As with reductions in the timeliness of entry, a larger minimum scale of green�eld entry raises

the likelihood of being in a monopoly state, and has a non-monotonic e¤ect on the probability

of merger. Similar to cases in which e approaches zero, as �Kg grows large the probability of

merger declines because the likelihood of post-merger entry grows small; nonetheless, as �Kg

24When e = 1, a merger in state (K1; 0) or (0;K2) does not a¤ect producer value because the old entrant

gets immediately replaced by a new entrant. As the value of the new entrant is strictly positive, this implies

that the merger must decrease the joint continuation values of the merging �rms.
25 If the antitrust authority adopts a CV standard instead of an AV standard, the relationship between the

timeliness of entry and the steady state probability of a merger remains non-monotonic: as e decreases, the

merger frequency �rst increases and then decreases.
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grows, both the set of states in which mergers are permitted by the antitrust authority and the

set of states in which mergers are proposed grow larger. However, in contrast to a reduction

in the timeliness of entry, aggregate value shows relatively small and non-monotonic changes

as �Kg rises. The reason for this di¤erence is that the aggregate capital in the market does

not fall as �Kg gets larger, in contrast to the case when e gets small. This occurs because

while the likelihood of entry grows smaller as �Kg grows, when entry does occur it is at a

larger scale, and the incumbent monopolist is incented to invest to reduce this possibility and

get better merger terms when entry does occur.

Table 4: Minimum Scale of Green�eld Investment and Markov Perfect
Policy Outcomes (Intermediate Market, AV Criterion)

Performance Measure26 �Kg = 1 �Kg = 2 �Kg = 3 �Kg = 4 �Kg = 5

Avg. Consumer Value 43.3 39.6 37.8 38.5 35.6

Avg. Incumbent Value 69.9 73.1 73.8 76.8 76.6

Avg. Entrant Value 0.5 0.3 0.2 0.1 0.0

Avg. Blocking Cost -0.1 -0.1 0.0 0.0 0.0

Avg. Aggregate Value 113.6 113.0 111.8 115.4 112.3

Avg. Price 2.19 2.22 2.24 2.23 2.26

Avg. Quantity 21.0 20.2 19.7 19.9 19.2

Avg. Total Capital 7.7 7.6 7.6 7.9 7.1

Merger Frequency 16.1% 16.4% 15.6% 8.8% 3.5%

% in Monopoly 49.4% 82.3% 97.0% 99.5% 99.8%

% minfK1;K2g � 2 44.2% 17.5% 2.6% 0.5% 0.2%

4.2 Entrant Investment E¢ ciency

In our analysis of the welfare e¤ects of various merger policies, �entry for buyout� plays

a prominent role. When mergers are allowed a new entrant�s private bene�t from investing

signi�cantly exceeds the incremental aggregate value that results from those investments, while

the incremental aggregate value from an incumbent�s investment exceeds its private bene�t

to the incumbent. As a result, the entrant invests too much and the incumbent invests too

little. The entrant�s high cost green�eld investment substitutes for the incumbent�s lower cost

investment done through capital augmentation and directly causes waste.

In practice, however, entrants�investments are not always less e¢ cient than incumbents�

investments, and may sometimes even be more e¢ cient.27 In this subsection, we explore

26All values are ex ante (beginning-of-period) values, while the performance measures in the last two rows

are at the Cournot competition stage.
27Henderson (1993) provides evidence of this in the photolithographic alignment equipment industry where

several generations of entrants supplanted incumbents by more e¢ ciently using their knowledge capital.
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this point by changing the model�s parameters to close the gap between the investment costs

entrants and incumbents face.

Focusing on the intermediate market, we examine whether this change largely eliminates

the waste that entry for buyout causes by studying the e¤ect of a change from the no-mergers-

allowed policy to the all-mergers-allowed and Markov perfect policies when the antitrust au-

thority�s criterion is AV maximization. Overall, we �nd that (i) entry for buyout behavior

continues to be prevalent, (ii) its social costs are greatly reduced; (iii) the antitrust authority

is much more willing to allow mergers in the Markov perfect policy; and (iv) with this change,

consumer value falls somewhat more when moving from no-mergers-allowed to the Markov

perfect policy.

Recall that capital augmentation each period enables a �rm with K units of capital, if

it wishes, to double each unit j at a cost cj drawn independently and uniformly from the

interval [c,�c] : If it wants to more than double its current stock of capital, then it can purchase

additional green�eld units at constant unit cost cg, where cg is uniformly drawn from [�c; �cg].

Let s = �c � c and sg = �cg � �c be the spread of capital augmentation costs and green�eld
costs respectively. In the baseline industry analyzed in the previous sections the values are

c = 3; �c = 6; �cg = 7; s = 3; and sg = 1: To close the gap between entrant and incumbent

investment costs we reduce s to 1 and sg to 0:25. Since this change, if c were held �xed, would

reduce �rms�investment costs, leading to less monopoly and very di¤erent merger behavior,

we simultaneously raise c to 4:645, which keeps the frequency of monopoly unchanged when

no mergers are allowed. Thus, we have c = 4:645, �c = 5:645, �cg = 5:895; we refer to these

modi�ed parameter values as the �e¢ cient entry environment.�

Table 5 shows the results when we switch from our baseline environment to the e¢ cient

entry environment. The table reports the same performance statistics as before, with the

addition of one new measure: �Avg. Monop. to Merger Time.�This statistic measures the

expected number of periods the industry takes to transition from a monopoly state to a state in

which the incumbents merge.28 Comparing the two environments, we see that entry for buyout

behavior actually increases when we move to the e¢ cient entry environment; for example, when

all mergers are allowed, the monopoly to merger time falls from 2.6 to 2.1. However, the costs

of this behavior are greatly reduced: AV now falls only 0.6% when all mergers are allowed

(from 87.9 with no mergers to 87.4 when all mergers are allowed), compared to 10.0% in our

baseline case (from 117.5 with no mergers to 105.8 with all mergers allowed). Because of

the reduction in the ine¢ ciency of pre-merger investment behavior, allowing mergers is much

more attractive for the antitrust authority, and the Markov perfect policy results in far more

mergers in the e¢ cient entry environment: the probability of merger is now 42.6% in each

period, compared to only 16.1% in our baseline case. Indeed, the equilibrium is essentially

equivalent to the case in which all mergers are allowed. Finally, this increased merger activity

results in a much greater likelihood of the industry being in a monopoly state (79.4% of the

28We use the steady state distribution over monopoly states as weights, and exclude state (0; 0).
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time in the e¢ cient entry environment vs. 49.4% in our baseline case). As a consequence,

there is a somewhat greater reduction in consumer value when moving from no mergers being

allowed to the Markov perfect policy (a reduction of 13.6%, from 34.9 to 30.5 in the e¢ cient

entry environment, vs. a reduction of 10.0%, from 48.1 to 43.3).29

Table 5: Performance Measures for the E¢ cient Entry Environment
in the Intermediate Market

Baseline Environment E¢ cient Entry Environment

Performance Measure30
No-

Mergers

All-

Mergers

MPP-

AV

No-

Mergers

All-

Mergers

MPP-

AV

Avg. Consumer Value 48.1 35.8 43.3 34.9 30.5 30.5

Avg. Incumbent Value 69.4 68.1 69.9 53.1 54.9 54.9

Avg. Entrant Value - 1.9 0.5 - 2.0 2.0

Avg. Blocking Cost - - -0.1 - - 0.0

Avg. Aggregate Value 117.5 105.8 113.6 87.9 87.4 87.4

Avg. Price 2.15 2.26 2.19 2.27 2.32 2.32

Avg. Quantity 22.2 19.2 21.0 18.9 17.7 17.7

Avg. Total Capital 8.0 7.0 7.7 5.6 5.7 5.7

Merger Frequency 0.0% 37.7% 16.1% 0.0% 42.6% 42.6%

% in Monopoly 18.6% 86.0% 49.4% 18.6% 79.4% 79.4%

% minfK1;K2g � 2 75.7% 0.9% 44.2% 68.6% 4.2% 4.2%

Avg. Monop.

to Merger Time
- 2.6 6.1 - 2.1 2.1

4.3 The Planner�s Solution

We consider the second-best dynamic problem where the planner controls both �rms�merger

decisions (independent of their private pro�tability) as well as their investment decisions (as-

suming the planner has perfect information about �rms�private cost draws), taking as given

only that, in every period, �rms compete in a Cournot fashion. The analysis provides a

29The greater percentage reduction in consumer value in the Markov perfect policy compared to when no

mergers are allowed depends on market size. In results not reported here, we �nd that it remains true in the

large market, but in the small market there is no reduction in consumer value from allowing mergers in the

e¢ cient entry environment. The other e¤ects we report here for the intermediate market (continued entry for

buyout behavior, reduced cost of that behavior, and greater frequency of mergers) hold as well in the small and

large markets. Figures 26-28 in this Online Appendix show these e¤ects for a broader range of investment costs

for incumbents and entrants, focusing on the intermediate market. Speci�cally, for each combination of s 2 [1; 3]
and sg 2 [0:25; 1] we �nd the level c(s; sg) at which the percentage of time in a monopoly state is 18.6% in the

no-mergers-allowed equilibrium. The �gures show, respectively, the average time from monopoly to merger

in the all-mergers-allowed equilibrium (Figure 26), (AVNo � AVall)=AVNo (Figure 27), and the probability of
merger in the Markov perfect policy (Figure 28) for each economy (s; sg; c(s; sg)).
30All values are ex ante (beginning-of-period) values except % in Monopoly and % minfK1;K2g � 2 which

are at the Cournot competition stage.
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Figure 20: Solution to the planner�s second-best problem (AV criterion) in the intermediate

market. The height of each pin gives the probability of the corresponding state in the steady

state generated by the planner�s optimal policy. The shading of the cells indicates the merger

probabilities, with a darker shading corresponding to a higher merger probability.

benchmark for how optimal merger policy would look absent concerns about the e¢ ciency of

investment behavior. In our analysis, we con�ne attention to the AV criterion.31

Figure 20 shows the steady state distribution for the solution of this second-best problem

in the intermediate market: the height of each pin gives the beginning-of-period probability of

the corresponding state in the steady state generated by this policy; the cells in which mergers

are approved are darkly shaded. As the planner controls not only merger decisions but also

�rms�investment decisions, the planner does not face a time inconsistency problem; i.e., the

solution is independent of whether or not the planner can commit to his future decisions.32

As Figure 20 shows, in the steady state generated by the planner�s solution, the industry

is always in a monopoly state. A merger is implemented in many states, unless these states

involve high capital levels for both �rms. In fact, the set of states in which mergers happen is

almost identical to the set of states in which a merger is statically aggregate surplus-increasing

31The second-best solution is not well-de�ned for the CV criterion as consumers always bene�t from larger

capital stocks.
32The existence of blocking costs is irrelevant for the solution to the second-best problem as it can never be

optimal from the planner�s point of view to propose a merger and subsequently block it in the event blocking

costs are su¢ ciently low.
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(for reasons that will be discussed below).33

Table 6: Performance Measures for the Intermediate Market under Various Policies

Performance measure34
No-Mergers/

MPP-CV

All-

Mergers

MPP-

AV

Commitment

(CV and AV)
Planner

Avg. Consumer Value 48.1 35.8 43.3 49.3 39.2

Avg. Incumbent Value 69.4 68.1 69.9 68.8 82.1

Avg. Entrant Value 0.0 1.9 0.5 0.0 0.0

Avg. Blocking Cost 0.0 0.0 -0.1 0.0 0.0

Avg. Aggregate Value 117.5 105.8 113.6 118.1 121.3

Avg. Price 2.15 2.26 2.19 2.14 2.23

Avg. Quantity 22.2 19.2 21.0 22.5 20.1

Avg. Total Capital 8.0 7.0 7.7 8.2 8.1

Merger Frequency 0.0% 37.7% 16.1% 3.0% 0.0%

% in Monopoly 18.6% 86.0% 49.4% 14.3% 100.0%

% minfK1;K2g � 2 75.7% 0.9% 44.2% 78.8% 0.0%

State (0,0) CV 30.3 23.9 25.6 30.4 25.3

State (0,0) AV 36.7 34.0 35.5 36.7 41.8

The fact that in the second-best solution the industry is always in a monopoly state may be

surprising at �rst. After all, when mergers are not allowed the industry seems to be a workable

duopoly. The reason is closely related to the fact that mergers are frequently aggregate surplus

increasing, given our chosen parameters. To understand this point, suppose �rst that the

planner could not only control mergers but also costlessly undo previously approved mergers.

Suppose also that there were no merger proposal costs. What would the planner�s optimal

policy be in that case? In any state (K1;K2), the planner would optimally implement a merger

if and only if the merger increases static aggregate surplus as this is statically optimal and

also does not impede dynamic optimality as the planner controls investment, the investment

technology is merger neutral, and the planner can costlessly undo any previously approved

merger. In Figure 5 of the main paper we saw that a merger increases static aggregate surplus

in every state in which K1+K2 � 10 (except in state (5; 5) in which the gain is approximately
zero) and, also, in several additional states in which K1 + K2 > 10. So, unless the planner

wants to spend a large amount of time in states with more than 10 units of capital, the steady

state generated by the planner�s policy will visit only monopoly states even if the planner

cannot undo previously approved mergers and there are proposal costs � which is what is

going on here.35 Finally, note that this reasoning also explains why the set of states in which

33For comparison with the optimal merger policy (with and without commitment), performance measures of

the planner�s solution are provided in the last column of Table 6.
34All values are ex ante (beginning-of-period) values except % in Monopoly and % minfK1;K2g � 2 which

are at the Cournot competition stage.
35 In the steady state generated by the planner�s solution, the industry is sometimes (8.3% of the time) in a

monopoly state with more than 10 units of capital, the joint frequencies of states (11; 0) and (0; 11) being 6.1%.
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the planner implements mergers almost coincides with the set of statically aggregate surplus-

increasing mergers. They do not coincide fully because of the presence of merger proposal

costs, which the static criterion does not take into account.

The results in the small and large markets are very similar: in both markets, the AV-

maximizing second-best solution involves monopoly all of the time.

4.4 Entrant Identity

A key restriction in the duopoly model analyzed in Section 3 of the main paper is that no

more than two �rms can be active at any one time. Throughout this restriction has been posed

exogenously. Our baseline assumption is that the entering �rm after a merger is owned by an

entrepreneur who has never before been active within the industry. This assumption begs the

question as to why he did not enter previously before the merger took place.

An alternative to the exogenous restriction we have used is to assume that only two en-

trepreneurs have the necessary skill and knowledge set to compete in the industry. If that is

the case and both entrepreneurs are active in the industry, then the owner/manager of the

acquired �rm would become the new entrant following a merger. (We assume there is not a

�no-compete�clause in the acquisition agreement.) Equation (1) in the main paper giving the

joint value gain from merging then becomes

�12 (K1;K2) �
��
V (K1 +K2; 0) + V (0;K1 +K2)

�
�
�
V (K1;K2) + V (K2;K1)

�	
:

New to the de�nition is the entrant�s ex ante value V (0;K1 +K2). It must be included because

the entrepreneur who is bought out intends to re-enter. In other words, the two entrepreneurs

will agree to merge� one buying out the other� if it pays them jointly to create temporarily

a monopoly situation in the industry until that time the bought-out entrepreneur successfully

returns to the industry. Since V (0;K1 +K2) � 0 this weakly increases the merger frequency
(holding the policy and value function constant). Table 7 shows a side-by-side comparison for

the intermediate market of the equilibria for these two di¤erent assumptions concerning entry.

When all mergers are allowed, this change increases the frequency of mergers. (Although note

that in the AV-maximizing Markov perfect policy the merger frequency ends up lower than

before.) Inspection shows that, overall, our results are not qualitatively di¤erent from our

earlier results.

But these are both states that are reachable by aggregate surplus increasing mergers.
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Table 7: Performance Measures when the Bought Firm is the Entrant
in the Intermediate Market
New Entrant Bought is Entrant

Performance Measure36
No-

Mergers

All-

Mergers

MPP-

AV

No-

Mergers

All-

Mergers

MPP-

AV

Avg. Consumer Value 48.1 35.8 43.3 48.2 35.6 45.4

Avg. Incumbent Value 69.4 68.1 69.9 69.4 68.7 69.6

Avg. Entrant Value - 1.9 0.5 - - -

Avg. Blocking Cost - - -0.1 - - -0.0

Avg. Aggregate Value 117.5 105.8 113.6 117.6 104.3 115.0

Avg. Price 2.15 2.26 2.19 2.15 2.26 2.17

Avg. Quantity 22.2 19.2 21.0 22.2 19.2 21.5

Avg. Total Capital 8.0 7.0 7.7 8.0 7.0 7.8

Merger Frequency 0.0% 37.7% 16.1% 0.0% 49.2% 11.8%

% in Monopoly 18.6% 86.0% 49.4% 18.3% 94.0% 35.9%

% minfK1;K2g � 2 75.7% 0.9% 44.2% 76.0% 0.1% 57.0%

Avg. Monop.

to Merger Time
- 2.6 6.1 - 2.6 8.5

4.5 Capital-weighted Bargaining Power

In the main paper, we have assumed that �rms split the surplus from merging equally when

n = 2. Here, we explore the case where the surplus division in Nash bargaining is proportional

to the merging �rms�capital stocks, i.e., in state (K1;K2), �rm i gets a share Ki=(Ki+K�i).

When a �rm expects to merge in the future, capital-weighted bargaining power provides

it with an additional incentive to add capital, holding �xed the rival�s investment. Consider,

for example, state (5; 5) under the all-mergers-allowed policy. Moving from equal bargaining

weights to capital-weighted bargaining power increases each �rm�s expected investment from

1.0 to 1.4. In monopoly states, however, the entrant faces a countervailing incentive because

(i) it will capture only a small fraction of the surplus from merging and (ii) the incumbent

invests more than under equal bargaining weights. As a result in monopoly states in which the

incumbent has more than �ve units of capital, which represents nearly all of the steady state

at the investment stage, the change in the division of bargaining power decreases the entrant�s

expected investment. The distortion in �rms�investment incentives due to entry for buyout is

thus mitigated when the division of bargaining power is proportional to �rms�capital stocks.

Table 8 provides the performances measures for the intermediate market under the no-

mergers, all-mergers-allowed and AV-oriented Markov perfect policies. As before, the no-

mergers policy achieves the highest average aggregate value while the all-mergers-allowed

policy performs worst. However, because of the changed investment incentives under the

capital-weighted division of bargaining power, the latter policy does not perform quite as

36All values are ex ante (beginning-of-period) values except % in Monopoly and % minfK1;K2g � 2 which

are at the Cournot competition stage.
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badly as before: Compared to the case of equal bargaining weights, the average capital stock

is considerably larger (7.5 instead of 7.0), resulting in a higher average aggregate value (111.2

instead of 105.8).

Because of the improved investment incentives in monopoly states under the capital-

weighted division of bargaining power is that the AV-oriented Markov perfect policy allows

mergers in a much larger set of states. In fact, the approval probability is less than 50% only

in states in which both �rms have at least �ve units of capital. As a result, the average merger

frequency increases from 16.1% to 29.6%, which is not much lower than the 32.1% merger

frequency when all mergers are allowed. The performance of the Markov perfect policy is

therefore close to that of the all-mergers-allowed policy: the average AV is 112.1, compared to

111.2 under the latter policy (and 113.6 under the Markov perfect policy with equal bargaining

weights).

Table 8: Performance Measures for the Intermediate Market
under Various Policies and Capital-weighted Bargaining Power

Performance Measure37 No-Mergers All-Mergers MPP-AV

Avg. Consumer Value 48.1 37.2 37.3

Avg. Incumbent Value 69.4 72.9 74.0

Avg. Entrant Value 0.0 1.1 0.8

Avg. Blocking Cost 0.0 0.0 0.0

Avg. Aggregate Value 117.5 111.2 112.1

Avg. Price 2.15 2.25 2.24

Avg. Quantity 22.2 19.6 19.6

Avg. Total Capital 8.0 7.5 7.5

Merger Frequency 0.0% 32.1% 29.6%

% in Monopoly 18.6% 96.0% 49.4%

% minfK1;K2g � 2 75.7% 0.2% 44.2%

State (0,0) CV 30.3 25.4 25.9

State (0,0) AV 36.7 35.1 35.3

4.6 Outcomes for Various Scale Parameter Values

In Section 3.4 of the main paper, we examined the extent to which several of the features of

the equilibria in our small, intermediate, and large markets extend across a wider range of

demand parameters B and A. Here we do a similar analysis across demand parameter B, the

size of the market, and production parameter �, the scale parameter. Our analysis in this

section shows the same patterns as are shown in the main paper. It suggests that changing

37All values are ex ante (beginning-of-period) values except % in Monopoly and % minfK1;K2g � 2 which

are at the Cournot competition stage.
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the production scale parameter � leads to similar comparative statics as changing the demand

function choke price A.

Figure 21 reports on the di¤erence in aggregate value between the no-mergers-allowed

and all-mergers-allowed equilibria. The �gure depicts contour lines showing the parameters

at which the aggregate value di¤erence (AVNo � AVAll)=AVNo achieves a given percentage

value (each contour line is labelled). Also shown in the �gure are three dots representing

the parameters of our small, intermediate, and large markets, as well as dashed lines showing

markets that spend 5%, 20%, and 60% of the time in monopoly when no mergers are allowed

(these are roughly the monopoly percentages in our large, intermediate, and small markets).

As can be seen in the �gure, aggregate value with no mergers allowed is greater than with all

mergers allowed provided that the market is large enough. This pattern is nearly identical to

the pattern seen in the main paper.

Figure 22 shows the percentage di¤erence in entry probabilities in the no-mergers-allowed

and all-merger-allowed equilibria, [Pr(Entry)All �Pr(Entry)No]=Pr(Entry)All].38 Consistent
with the entry for buyout we observed earlier, the level of entry is always weakly greater in the

all-mergers-allowed equilibrium, although the di¤erence declines to zero in very large markets

where the probability of entry rises to 1 under either merger policy.

Figure 23 shows the probability of a merger occurring under the Markov perfect policy.

We see the same pattern as we saw in the main paper. Moving from the Southwest corner, the

probability of merger increases as the market gets larger. Continuing in the same direction,

however, the probability of merger begins decreasing once the market is large enough that the

Markov perfect policy of the antitrust authority allows fewer mergers.

Figure 24 shows the percentage di¤erence in aggregate value between the Markov perfect

policy and the no-mergers-allowed equilibrium (AVMPP � AVNo)=AVMPP . Again, we see the

same pattern as we saw in the main paper. In small markets, the Markov perfect policy leads to

higher aggregate value than when no mergers are allowed. The no-mergers policy outperforms

the Markov perfect policy provided the market is large enough. However, for the largest

markets in the Northeast corner, the Markov perfect policy leads to the same equilibrium as

the no-mergers policy because mergers are never consummated.

Figure 25 shows the same AV comparison but relative to the outcome with the static

aggregate surplus based policy, (AVMPP�AVStatic)=AVMPP . The �gure shows that the Markov

perfect policy outperforms the static agrgegate surplus based policy provided the market is

large enough.

38Pr(Entry)x is calculated by weighting the probability of entry in each monopoly stateunder merger policy

x by the probability of that state in the all-mergers-allowed equilibrium.
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Figure 21: Contour lines of the percentage di¤erence between the steady state aggregate value

of the no-mergers and all-mergers-allowed equilibria, (AVNo �AVAll)=AVNo.
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Figure 22: Contour lines of the percentage of entry probabilities between the no-mergers and

all-mergers-allowed equilibria, [Pr(Entry)All � Pr(Entry)No]=Pr(Entry)All].
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Figure 23: Contour lines of the steady state probability of merger in the MPP-AV equilibria.
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Figure 24: Contour lines of the percentage di¤erence between the steady state aggregate value

of the MPP-AV and no-mergers equilibria, (AVMPP �AVNo)=AVMPP .
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Figure 25: Contour lines of the percentage di¤erence between the steady state aggregate value

of the MPP-AV and static-AS policy equilibria, (AVMPP �AVStatic)=AVMPP .

4.7 Outcomes for Various Ranges of Investment Costs

In this section we examine outcomes for a broader range of investment costs for incumbents and

entrants, focusing on the intermediate market. Speci�cally, for each combination of s 2 [1; 3]
and sg 2 [0:25; 1] we �nd the level c(s; sg) at which the percentage of time in a monopoly
state is 18.6% in the no-mergers-allowed equilibrium. Recall that our baseline intermediate

economy corresponds to (s; sg) = (3; 1) and our e¢ cient entry environment discussed in Section

4.2 corresponds to (s; sg) = (1; 0:25). These points represent, respectively, the Northeast and

Southwest corners of the contour plots below.

Figure 26 shows the average time from monopoly to merger in the all-mergers-allowed

equilibrium. As can be seen, there is quicker entry for buyout (i.e. average time from monopoly

to merger goes down) when the spread of augmentation draws decreases and the entrant�s

investments become more e¢ cient relative to the incumbent�s. Figure 27 shows the di¤erence

in aggregate value between the no-mergers-allowed and all-mergers-allowed equilibria. As

noted in Section 4.2, increasing entrant e¢ ciency (moving in the Southwest direction) helps

to mitigate the reduction in aggregate value from allowing mergers. Figure 28 shows the

probability of merger in the Markov perfect policy. The probability of merger increases as we

increase entrant e¢ ciency due to the fact that the antitrust authority allows more mergers

when entrants are more e¢ cient.
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Figure 26: Contour lines showing the steady state weighted average time from monopoly to

merger in the all-mergers-allowed equilibrium. The minimum augmentation draw, c, is set as

a function of s and sg to achieve 18.6% monopoly in the no-mergers equilibrium.
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Figure 27: Contour lines of the percentage di¤erence between the steady state aggregate value

of the no-mergers and all-mergers-allowed equilibria, (AVNo � AVAll)=AVNo. The minimum

augmentation draw, c, is set as a function of s and sg to achieve 18.6% monopoly in the

no-mergers equilibrium.
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Figure 28: Contour lines of the steady state probability of merger in the MPP-AV equilibria.

The minimum augmentation draw, c, is set as a function of s and sg to achieve 18.6% monopoly
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5 Multiplicity of Equilibria

Dynamic stochastic games with in�nite horizons generally have multiple equilibria when players

are patient. Within the context of the Ericson and Pakes (1995) model of computable Markov

perfect equilibria, Besanko et al. (2010) develop a homotopy-based method for tracing out

paths on the equilibrium manifold and systematically �nding points in the parameter space

for which multiple equilibria exist.39 It does not, however, provide a guarantee that it will �nd

all equilibria.

The homotopy technique depends on di¤erentiating the equations that implicitly de�ne

the model�s equilibria. This requirement makes it, as a practical manner, infeasible to apply

to our merger model because a key step in numerically solving for equilibria is a Monte Carlo

integration. Numerically di¤erentiating this integral with reasonable accuracy is not possible

with the computing power to which we have access. Consequently we implemented a cruder

search for multiple equilibria that may fail to �nd cases of multiplicity that the homotopy

technique would �nd if it were feasible.40

The idea is straightforward. Along lines through the parameter space, we calculate se-

quences of equilibria using the equilibrium values of one equilibrium as the starting points

for the next equilibrium computation. For example, one line we search is where the demand

parameter B 2 f11; 12; 13; :::; 40; 41g and all other parameters are �xed. We start the equilib-
rium calculations from both ends of the line and use the equilibrium values calculated for a

particular B as the initial values for calculating the equilibrium at the next B: If equilibrium

multiplicity exists along the line, then the equilibrium values for a particular B reached from

the line�s left end may not equal the equilibrium values for that same B reached from the

line�s right end.

We performed this test for 93 total lines of three types. In the �rst type of line, we

vary the demand parameter B 2 f11; 12; 13; :::; 40; 41g while �xing the demand parameter
A 2 f1:5; 1:6; 1:7; :::; 4:4; 4:5g. All other parameters are �xed at their standard values. In
the second type of line, we vary the scale parameter � 2 f1:05; 1:053; 1:057; :::; 1:147; 1:15g
while �xing the demand parameter B 2 f11; 12; 13; :::; 40; 41g. In the third type of line, we
vary the augmentation cost spread parameter s 2 f1; 1:13; 1:27; :::; 4:87; 5g while �xing the
minimum augmentation cost parameter c 2 f2; 2:1; 2:1; 4:9; 5g. For the no-mergers policy we
�nd multiplicity for some parameter values. For the all-mergers-allowed policy and the Markov

perfect policy based on the AV criterion we �nd no multiplicity, but we do �nd regions in which

our algorithm failed to calculate an equilibrium for the Markov perfect policy.41

39See Borkovsky, Doraszelski, and Kryukov (2010, 2012) for further discussion and illustration of how to use

this homotopy technique.
40We thank Uli Doraszelski for suggesting this technique to us.
41The regions where we cannot �nd Markov perfect policy equilibria are where the equilibria transition from

being almost entirely monopoly in the steady state to being only 85% monopoly. At this point, small changes in

the antitrust authority�s policy result in large changes in equilibrium behavior so it is di¢ cult to �nd a Markov
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Each instance of multiplicity that we �nd for the no-mergers policy has a common structure.

The distinguishing strategic di¤erence in the two equilibria is the investment behavior at state

(1,0) and in some cases state (2,0). Total investment is approximately the same, but in one

equilibrium, the incumbent invests more, and in the other equilibrium, the entrant invests

more. Each �rm wants to have an aggressive investment policy if the other �rm has a passive

investment policy, and a passive policy if the other �rm has an aggressive policy. Almost

certainly a third equilibrium exists that is unstable and not computable with our algorithm.42

An example of the no-mergers multiplicity is when (B;A) = (33; 2:8) where the investment

at state (1,0) is the di¤erence in the equilibria. In �equilibrium 1�the incumbent builds, in

expectation, 2.0 units of capital while the entrant builds 1.1 units of capital. In �equilibrium

2� the behavior reverses: the incumbent builds 1.2 units of capital while the entrant builds

2.2 units of capital. Table 9 shows that the performance measures for these two equilibria are

quite close since investment behavior in state (1,0) does not have much impact on steady state

behavior.

Finally, we point out that we �nd no multiplicity for our baseline parameters.

Table 9: Performance Measures for Two Pure Equilibria
under No Mergers at (B;A) = (33;2:8)

Performance measure43 Equil. 1 Equil. 2

Avg. Consumer Value 30.9 31.0

Avg. Incumbent Value 68.3 68.3

Avg. Aggregate Value 99.2 99.4

Avg. Price 2.20 2.20

Avg. Quantity 19.9 19.9

Avg. Total Capital 6.4 6.4

% in Monopoly 79.3% 78.9%

%minfK1;K2g � 2 19.3% 19.7%

6 Additional Tables and Figures Referenced in the Main Paper

Table 10 displays the equilibrium statistics of our primary duopoly market parameterization

from the main paper, only allowing for a third �rm. Comparing to Table 2 in the main paper,

it can be seen that this market is a �natural duopoly� in that even when three �rms are

allowed, the no-mergers steady state measures are very similar to when only two �rms are

perfect policy which is the best response to the �rm behavior it induces. We believe there are equilbria in this

region but that they are very unstable and our algorithm can not �nd them.
42See Besanko et al. (2010, section 3.2) for a discussion of the inability of Pakes-McGuire-like algorithms to

compute unstable equilibria.
43All values are ex ante (beginning-of-period) values except % in Monopoly and % minfK1;K2g � 2 which

are at the Cournot competition stage.
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allowed. One can also see that our insights from the study merger policy in the duopoly case

carry over to the triopoly case.

Table 10: Performance Measures for the (A=3,B=26) Market
under Various Policies (Allowing a Third Firm)

Performance Measure44
No-Mergers/

Static-CS/

MPP-CV

All-Mergers Static-AS MPP-AV

Avg. Consumer Value 48.3 38.0 38.1 47.1

Avg. Incumbent Value 69.3 68.9 69.4 69.6

Avg. Entrant Value 0.0 0.8 0.8 0.1

Avg. Blocking Cost 0.0 0.0 0.0 -0.0

Avg. Aggregate Value 117.6 107.7 108.2 116.7

Avg. Price 2.15 2.24 2.24 2.16

Avg. Quantity 22.2 19.8 19.8 21.9

Avg. Total Capital 8.0 7.6 7.6 8.1

Merger Frequency 0.0% 50.8% 50.2% 13.3%

% in Monopoly 18.0% 85.4% 86.9% 31.3%

% in Duopoly 81.5% 14.6% 13.1% 68.7%

State (0,0,0) CV 32.7 26.0 26.2 29.9

State (0,0,0) AV 34.7 31.9 32.1 34.9

Figure 29 shows the di¤erence between the private and social incentives to invest when all

mergers are allowed. The socially insu¢ cient incentive for incumbent �rms to invest and the

socially excessive incentive for entrants to invest results in the detrimental e¤ects of entry for

buyout seen in the main paper.

44All values are ex ante (beginning-of-period) values except % in Monopoly and % in Duopoly (showing the

percentages of the time that industry capital is in each type of state) which are at the Cournot competition stage.

�No-mergers�and �All-Mergers�refer to the no-mergers-allowed and all-mergers-allowed policies, respectively.

�Static-CS� and �Static-AS� refer, respectively, to the equilibria under the optimal static consumer surplus-

based and aggregate surplus-based merger policies. �MPP-CV� and �MPP-AV� refer, respectively, to the

equilibria when the antitrust authority cannot commit (resulting in a Markov perfect policy) under consumer

value and aggregate value welfare criteria. �State (0,0) CV� and �State (0,0) AV� are the values of CV and

AV, respectively, for a new industry that starts with no capital.
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Figure 29: Private incentive of the row �rm (�rm 1) to invest minus the social incentive for

the row �rm to invest in the intermediate market with all mergers allowed. Negative numbers

are in parentheses.
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